
Section 4.61: Permeability of Artificial Membranes 
 

Fick’s Law (4.19) 𝑗 = −𝐷 %&
%'

 
Students are advised to read section 4.4.2 to understand the above equation. 
In the figure below, a system of two sides (as shown below), say side 1 and side 2, separated by a 
partition of thickness ∆𝑥, Fick’s law becomes:  

𝑗 = −𝐷
∆𝑐
∆𝑥, 

where ∆𝑐 = 𝑐, − 𝑐-. +x is taken to be to the right, and since it is clear that 𝑐, − 𝑐- < 0, j > 0, 
and the flux of particles is to the right, which makes sense since particles must flow from high to 
low concentration. 
 
 
 
 
 
 
 
 
 
 
You should now read section 4.6.1, where Fick’s law is applied to a biological cell (say a 
bacteria), where a lipid membrane separated the inside (in) of the cell from the outside (out) 
environment. Let’s assume that the cell is anaerobic, in that it consumes oxygen (O2) to create 
energy. The concentration of oxygen in the outside environment is usually assumed to be 
constant, 𝑐012 (a typical value is 𝑐012 = 0.2𝑚𝑜𝑙𝑒 ∙ 𝑚:;). Assume that oxygen concentration 
inside 𝑐<=(𝑡) is less than outside, 𝑐<=(𝑡) < 𝑐012. The flux of oxygen is 

𝑗A = −℘A∆𝑐,				∆𝑐 = 𝑐012 − 𝑐<=(𝑡), 
Where ℘Ais the permeability of the membrane to a solute, which depends on the type of solute, 
and the type and thickness of the membrane. Typical number is ℘A~3 × 10:H𝑚 ∙ 𝑠:-. Note that 
the unit of 𝑗A is 𝑚 ∙ 𝑠:- ×𝑚:; = 𝑚:, ∙ 𝑠:-. Since ∆𝑐 > 0 → 𝑗A < 0, so that the flux is into the 
cell.  
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It is clear that as oxygen flows into the cell the oxygen concentration 𝑐<=(𝑡) inside will increase. 
Detailed balance gives: 
Rate of increase of oxygen inside EQUALS rate of flow of oxygen from outside to inside 

𝑑(𝑐<= × 𝑉)
𝑑𝑡 = 𝐴 × |𝑗A|, 

Where 𝑉 = P
;
𝜋𝑟;is the volume of the spherical cell (radius r), and 𝐴 = 4𝜋𝑟,is the surface area 

of the lipid membrane that envelops the cell. Using 𝑗A = −℘A∆𝑐, and assuming that V and A are 
constants, and that ∆𝑐 = 𝑐012 − 𝑐<=(𝑡) > 0: 

𝑑(𝑐<=)
𝑑𝑡 =

𝐴℘A

𝑉 ∆𝑐, 

But if we note that 𝑐012 is constant, %(&UVW)
%2

= 0, we have %(&XY)
%2

= − %Z&UVW:&XY(2)[
%2

= − %(∆&)
%2

, and 
the above equation becomes 

−
𝑑(∆𝑐)
𝑑𝑡 =

𝐴℘A

𝑉 ∆𝑐			[1] 
which is equation 4.22 of the textbook. This can be solved by assuming a solution 

∆𝑐 = 𝑐012 − 𝑐<=(𝑡) = 𝐵𝑒:
2
_, 𝜏 =

𝑉
𝐴℘A

			 

where B is a constant. This is easily verified by direct substitution into [1] 

−
𝑑(∆𝑐)
𝑑𝑡 = −

𝑑 a𝐴𝑒:
2
_b

𝑑𝑡 = −a−
𝐵
𝜏 𝑒

:2_b =
𝐴℘A

𝑉 𝐵𝑒:
2
_ =

𝐴℘A

𝑉 ∆𝑐			 
We can find B by assuming that a t = 0, the inside concentration is 𝑐<=(0), hence at t = 0 

∆𝑐 = 𝑐012 − 𝑐<=(0) = 𝐵𝑒:
c
_ 	→ 𝑐012 − 𝑐<=(0) = 𝐵 

Finally the solution is 

𝑐012 − 𝑐<=(𝑡) = Z𝑐012 − 𝑐<=(0)[𝑒
:2_,		 

You should now be able to do part a of problem 4.7. 
 


