Steady State and Membrane Resting Potential

The previous PDF handout points out that since the Nernst potential, $V_i^{Nernst} \neq \Delta V$ is not equal to the membrane potential there are current flow of ions of the amount, $I_i = (V_i^{Nernst} - \Delta V) / R_i$, where ions, Na⁺, K⁺, Cl⁻, into or out of the cells. The flow of ions will change the concentration of ions **inside** the cell, $C_{Na^+,in}$, $C_{K^+,in}$, $C_{Cl^-,in}$. This should

lead to a change in the membrane potential of ΔV . But it is well known that a **living** cell maintains a constant membrane potential of $\Delta V \sim -60mV$.

USEFUL QUESTIONS you should know how to answer: 1) Why do the flow of ions **do not significantly change** the ion concentrations **outside** the cell?; 2) How does the cell maintain a constant membrane potential $\Delta V \sim -60mV$.

<u>Na⁺/K⁺-ATPase</u> ion pump pumps **Na⁺ out** of the **cell** and **K⁺ into** the **cell**.

As illustrated in the diagram above, Na⁺/K⁺-ATPase is a protein that pumps two K⁺ potassium ions **into** the cell, and **three Na⁺** sodium ions **out** of the cell, per cycle. This compensate for the leak current and of K⁺ potassium ions **out of** the cell, $I_{K^+}^{ohmic} < 0$, and of Na⁺ sodium ions **into** the cell, $I_{Na^+}^{ohmic} > 0$, as shown in question 2 of assignment 8. This maintains **constant** ion **concentrations inside** the cell, $C_{Na^+,in}$, $C_{CI^-,in}$, which in turns means that the membrane **resting potential** remains constant at $\Delta V \sim -60mV$. In physics we say that the membrane is in a **steady state**. The image on the **next page** illustrate what happens in a living cell:

Figure shows how a **living** cell maintains a steady state membrane potential of $\Delta V = -60mV$

IMPORTANT POINT: membrane is **not** at **equilibrium**.

<u>Donnan Equilibrium</u>: When a cell dies the Na⁺/K⁺-ATPase stops pumping ions, but the cell will continue to leak of **K**⁺ potassium ions **out of** the cell, $I_{K^+}^{ohmic} < 0$, and of **Na**⁺ sodium ions **into** the cell, $I_{Na^+}^{ohmic} > 0$. This will change the ion concentration inside the cell and will change the membrane potential ΔV . This will continue until the all Nernst potentials equal the membrane potential: $\Delta V = V_{Na^+}^{Nernst} = V_{CI^+}^{Nernst}$. When this happens the cell will be at equilibrium, known as **Donnan equilibrium**. A typical Donnan equilibrium potential is $\Delta V = -10mV$.

QUESTION YOU SHOULD KNOW HOW TO ANSWER:

1) Examine the current leak equation, $I_i = (V_i^{Nernst} - \Delta V) / R_i$, to explain why the

current of ions is zero at Donnan equilibrium.

2) Given that charges usually flow until the electric potential difference is **zero**, **why** do you think the Donnan potential is not zero, $\Delta V \neq 0$?

HINT for one of the question: Lipid molecules that make up membranes are usually charged, and negatively charged **proteins** inside (intracellular) cells cannot permeate to the extracellular fluid outside the cell (see figure below).

