PHYS4171-Statistical Mechanics and Thermal PhysFall 2017, Assignment #6
Problem 1) Problem 14 Chapter 9 (10 points)

From 9.29, gravitational pressure P_ = M R 1 G]\Z/[
(4nR?/3) | (2 R
A3V r( N )
From 9.30, the degenerate gas pressure isP,=—| — | —| ——— , where m is
° 5{87) 2m (475133/3)

the mass of an electron. If we assume that the star is made up of He4 (2 protons + 2

. . M
neutrons), then the number of nucleons (protons or neutrons) in the star is about N =—,

m
p

where M is the “effective” mass of the star, and m =1.67% 10 kg is the mass of a

nucleon. Since there are 2 electrons per He4, the number of elcctrons in the star is

5/3
23,
N="2= M Sichgivesp =2 2| L)L | e
2 2m 5{87) 2m 2mp(47rR3 /3)

At equilibrium the two pressures must be equal:
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R= - M7 —=C —%| ,whereM_=1.9891x10"kg s the
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mass of the sun, and R = 6.957 x10°mis the radius of the sun, and
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5(9.1x107"kg)(1.67x 107 kg)(6.67x10 m’ +kg ™ -5
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9(6.626x107 Jos) 1

C=

1/3

-27 2
64x167X10 kg7 | 6.957x10°m(1.9891x10"kg)

C=(5.068><10’67)_1(1.7655><10’5°)(1.143><10’19): 3.98x10°



1/3

For 40 ERiB, Table 9.3 gives,C,,, =(R/R_)(M/M_)" =(0.013)(0.447) " =1x 10"

ERiB —

For Sirius B, Table 9.3 gives,C,,, =(R/R_ \(M/M_)"

At least it is to the same order of magnitude.

(0.0073)(1.05)” =7.4x10°*

Problem 2) Problem 20 Chapter 9 (10 points).

5 2/3
A) Equation 9.51, gives BE condensation temperature kT, = ;mh—(ﬂ]
n(2612)" 2m\V

For®Na—m=23x1.67x10"kg, with(N/V)z 10" +1x10°m* =10°m™3, which
1 (6626x10° s (10"
7(1381x107 ) /K )(2.612)"" 2(3841x10kg) '

TB23 =1.49636x10°K .

givesT =

3/2
: : . T
B) Use equation 9.52, the number of atoms in the ground state isn, =N| 1— {T_) . For

B

3/2
: T
90% to be in the ground staten, =0.9N —0.9= 1—(7] —T=01"°T,=32x107K .

B

C) For®Na—m=21x1.67x10""kg, with(N /V)=10" +1x10°m’ =10"m™* , which

(10%m® )2/3 .

1 (6626x10° s

N
S 7(1381x10°%] /K )(2.612)" 2(3.507x10kg)

T," =1.638871x10°K
For®Na—m=23x1.67x10"kg, with(N/V)z 10" +1x10°m* =10°m™3, which

1 (6626x10° J-s) (10"
7(1381x107 ) /K )(2.612)"" 2(3841x107kg) '

TB23 =1.49636x10°K

From 9.55, below the transition temperature:

givesT =

3/2 3/2
T T :
<E> =Neg, 1—(7] + 0.770(;] Nk, T,T <T,, where g is the ground-state energy,

B B



which if we neglect the ground-state part gives the heat capacity below the transition

a E 3/2
temperature €, = {%] =1.925Nk, (le , and Cy increases with T(see fig 9.8).
N,V

B

3/2
T
Above transition temperature, 9.56 gives C = %NkB 1+0.231LFB] +..|,and C,

decreases with T (see Fig 9.8).
i) 100% *’Na . The temperature of the gas is 1.3x107°K , which is below the transition

temperature of both isotopes, and of ’Na . This means that the gas will be in the BE
condensate state, and C, will increase with T in cases 1.

ii) 50% **Na and 50% *' Na . Here the number density will be altered since compared to
part i, there are only half the amount of each identical bosons for the same volume:

(N/V) =5x10" +1x10°m*=5x10"m. This gives

T, = : (6'626X10_34J'S)2 (5><1019m—3)2/3 =94%x10"K
7r(1.381><10‘23]/1()(2,612)2/3 2(3.841x10 " kg) , .
ha _ 1 (6626x10° s

= (5x10°m?)" =1x10°K .
r(1381x107) /K )(2.612)" 2(3507x10kg)

In both cases the transition temperatures are above the actual temperature 1.3x10°K ,
and the system is not in the BE condensate state, and C, will decrease with T in cases ii.
Problem 3) Problem 5 Chapter 10 (10 points)

A) Start wit equation 10.11, AE =TAS — PAV + UAN , which means that the internal

energy E (.S' ,V,N ) is naturally a function of S, V, and N. If we want the Emthalpy to be a

natural function S, P and N, we must eliminate AV , by defining the enthalpy as
H=E+PV — AH=AE +PAV +VAP , which combines with AE =TAS - PAV + uUAN ,

gives AH =TAS—PAV + IAN + PAV +VAP=TAS+VAP+uAN — H(S,P,N).

B)H(S,P,N)— AH = IV agi[ Q5] apy[ 9B Ay
S . oP . oN o

Comparing with AH =TAS+VAP+ UAN ,

Bl -
as ), aP ) oN ),

Problem 4) Problem 6 Chapter 10 (10 points)



Read section 6.2 on photon, where the density of state of EM modes in the frequency

3 4
o X T
dx =

rangevtov+dvisD, dv= [S—Zvazdv (equation 6.12), and using . —( ) 1 E
c exp(x)—

(see equation 6.15)
A) Note that from section 7.1, equation 7.9, the Helmholtz Free Energy is F = <E >— TS,
and equation 7.10, itisF=—k,TInZ, , where Z, is the N-particle partition function. For

identical non-interacting distinguishable particles Z =Z iv , where Z_ is the one-
particle partition function. In the case where the particles are identical non-interacting
indistinguishable particles Z, =Z f’ /N!, where 1/N! is the Gibb’s over-counting factor.
This means that the N-particle Helmholtz free energy is essentially additive,

N
F(N) = —kBTaniv = Z‘—I(BTan1 + constant, where it is clear thatZ =72 . =Z...=Z .
i=1
Now the partition function is the summation of all possible Boltzman factor, exp(— ﬂe) ,
which isZ = Zexp(— ﬁs) , Where it is possible for two or more states to have the same
&€

energy. For indistinguishable and identical photons of a single mode with frequency, v,
and energy € =nhv , where n is the number of photons of that mode, the partition

function is simply Z = Zexp(— ﬁnhv) . This is the well-known geometric series,
n=0
Lo 1-r
2=
n=0 1-

Z = g[exp(—ﬁhvﬂ = W , where we note that exp(—ﬁhv) <1.We assume

that the system can have any number of photons, since the chemical potential of a photon
system is zero [ =0 (see below). In the case where there are more than one mode of

k+1

- 1
, and for —1<r<1,2r”=—, SO
r p 1-r

photons with frequency v and energy n hv,, wheren, is the number of photons in the it
1
1- exp(—ﬁhvi)

that the multiplicative property is occurs since photons do not interact, and the absence of
I/N! is explained by the distinguishability of the different modes. Hence the Helmholtz

S S I
1- exp(—ﬁhv) '

previous treatments of free non-interacting particles discrete summations are transformed
to integrals Z() — stD(e)(m) , where D(s) is the density of state per unit energy.
€

mode, the partition function should be Z =27 Z 7 «+Z ++ where Z = . Note

free energy of the photon system L— Z—k SJInZ = ZkBTln{



Here we transformZ(w) — JdvDEM (v)() , where D (v) is the mode density of state

per unit frequency, where from equation 6.12D_ dv = [8—7;j Wiy .

c

ST G S _ ’ 1
thoton_zv‘d kBTln[l—eXp(—ﬁhV)]%thomn —k T.[ d D ( )1 [1—exp(—ﬁhv)]

1
B)F ——k T V| dvw?In| ————  |. Integrate by parts,
) photon ( J J [1—exp(—ﬁhv)] g YP

3

Id(uv): uv = Judv+Jvdu—>jvdu:uv—Iudv , with du =v’dv , so thatu= % , and

1 expl-p)
v=In| ——— |, so that dv:—ﬁh—dv . This gives
1—exp(—[)'hv) —exp( ,Bhv)

F._ =—k T[S”jv Vi L +ﬁhj”dvv—3—EXp(_ﬁhv)
photon c 3 1—exp(—ﬁhv) ) o 31— exp( ,Bhv)

V_3]n ; w:0_31n ; —oiln 1 It is easy to
3 1—exp(—ﬂhv) ) 3 1—exp(—ﬁh0) 3 1—exp(—Bh°°) |

see that the first term vanishes. For the second term we note that Taylor series expansion

ln(l— x) =—x if x is really small, and since exp(— ﬁhoo)is definitely really small

1 oo’ 1 oo’ _
ln[ - exp(—ﬁhoo)] ~ exp(—ﬁhoo) , and ?ln( - exp(—ﬁhoo)] ~ ?exp(—ﬁhoo) =

since exp(— ﬁhoo) approaches zero faster than o® approaches infinity. Hence we obtain

v3 exp(—Bhv
F _ =-kT|— Vﬁhj. dv M Make the substitution x = Shv,
photen 31- exp( ﬂhv)

kT(8x) (kT) 3 - x* 8 ) (kT )
thomf—?[?JV[ p ] 1_(4)j0 dxexp(x) —dv =2k, T(C ]V[T] g,(1).

n_4

3
kT 4
== F =_2kT|—= 8 || %l | T
9(Q  Photon c? h 90

3
kT *
Foo=ger| By %l | E
photon C h 45

From appendix, g, (1) = C(4)



oF 8z \( k. T 347t4

C) Using equations 10.15,S=—| —2°0 | —g y| = || 2= .

) g equ ( oT ]VN B(c3](h]45
oF 8r \( k,T 8’k

Using 10.16,P=—| — 2" | =k T| = T,
¢ ( oV lN ’ (63 ]( h J 45 3[15c3h3

3
kT kTY 4r*
Hence using 10.12, E= F+TS=—k,T| —= 8Tl 5ol | 7y | B || e | A7
c’ h 45 Bl e | on 45

8 \( k, T\ 8k, | .,
E=kTV| — VT*, which is the same as equation 6.15. Since
G\ h 15 15¢°h’

_1{ 87’k )., 1 L .
T" — PV =—E , which is the same as equation 6.18.
"3\ 15¢%0° 3

oF
Also from equation 7.13, = [%] =0, as stated.
TV

Problem 5) Problem 8 Chapter 10 (10 points)
Read and understand section 10.4 on the Gibb’s Free Energy: G=E-TS+PV=F+PV ;

] ] ]
aT ), . aP )., oN ),

A) ForG=-k,TN ln(aTS/ 2/ P) , compute the entropy.

3/2 3/2
5= 29| =i In| T |+ 2Nk, =k [ 10| 9T |42 .
or ), . P )2 P )2

B) ForG=-k TN ln(aTS/ 2/ P) , compute the heat capacity at constant pressure:

C :(E;_I;] , with the Enthalpy H=E+ PV =E-TS+ PV -TS=G+TS . Using the
P,N

P

5/2 3/2
results ofA),H:—kBTNlnLai) ]+Nk T(ln(ai ]+%)= gNkBT. Hence

C,= [g—?} = %ng , identical to the monatomic ideal gas result of equation (1.16) and
P,N

(1.18).

oG ) aT?? Nk.T
V= =—| —<{Nk_.T1 =—2£
C) Using [BP] (BP{ 5 n[ b ]HTN p

ideal gas equation.




D) UseG=E-TS+PV ->E=G+TS-PV,

3/2 3/2
E:—NkBTlnLCﬂ; ]+NkBT£1n(“7; ]+%]—NkBT—>E:§NkBT, which is the

equipartition theorem for monatomic ideal gas. Hence it is clear that
3/2

G= —NkBTlnL aT ) is the Gibb’s free energy of a classical monatomic ideal gas.

Problem 6) 3D Bose-Einstein (BE) Gas, at critical temperature: In class we showed

V) 20 ) 30l D

2 kTN g3/2(z)’

1/2
A= (h2 / (ZﬂkaT)) ,and z = exp( ﬁ,u) . We showed that a phase transition occurs at

critical temperature, Tg. Below Ty, a macroscopically large number of BE particles
occupy the ground state, € = 0. The phase transition can be detected by measuring the
heat capacity near T = Tg. Calculation in class showed that:

i_1_595/2(z)_293/2(z)
Nk, 4 g,,(2) 4g,,(2)
¢, _15v¢(5/2)
Nk, 4N 2A°

B
5/2
A) (5 points) Show that for T < Tj, C,= 1_51V k, C( / )
4 °"¢(3/2)
particles in the excited state. Explain why this relation obeys the third law of
thermodynamics.

,IT>T.,

B

JT<T,

, where N; is the number of BE

Start with<E> = §NkB,T Jsp2 (Z) andﬂ = ‘93/2—3(;2) , Which can be recombine to
2 93/2(Z) A
(E) 3Lk3TgM(z):3‘”‘%ijf(z) ForT<T,, 2= 1,,,(1)=¢(3/2), and the

2 93/2(2 )
o . . £(3/2) h
number of particles in the excited states is N, =V > where A = —— the rest
A J2amk, T

3/2

of the particle must then be in the ground state N = <n1>: N-N =N 1—[

mﬂ|’ﬂ

given by equation 9.52. Similarly ForT<T_,z=1, g3/2(1): C(3/2) , and



95/2(1):C(5/2)’ 50<E>— YEE . It is easy to see that<E>ocT5/2,and
C,= (8§E>] = 15Vk3gg%2(z) . But we showed that, T < Tk,

T . 47
N =v® 3/2) v__ N 15 ¢(5/2)

——= c~—>C _ZNekB

£(3/2)

From earlier, the number of particles in the excited states isN =V (l ) with

T
__h
A /27rkaT

third law of Thermodynamics.

A= , 80 that N o< T*? sothatasT — 0,N,=0and C, = 0, which is one of the

B) (5 points) Show that the heat capacity, Cy, is continuous at the critical temperature,
T=Ts-ie. C,(T=T,+0)=C,(T=T,-0)!
HINT: Look in the appendix at T = Tg, z = 1, but it is possible writez=1= exp(—oc) ,

C . u ) F(l—v)
which is equivalent to & =—-——— 0, and the appendix note,|jmJ, (expa) ~———=10
kBT a—0 o
show that 91/2(1) —> oo,
¢, 158:5(2) 99,,(2) o B
Start with N;;B —Zgzz(z)—zgzz(z),T>TB, where at T=Tg, z= 1, gv(l)—g“(v) , forv

¢, _15¢(5/2)
Nk, 4 ¢(3/2)

but we know thatat T =Tg, N = N, all particles are in the excited states, which gives,

> 1. For v =Y, the hint states that 91/2(1) — oo, 80 that forT=T,+0,

C 5/2

—V = 1—SN k, C( / ) , which is the same value as for T=T_+0, so Cy is continuous at
Nk, 4 °"¢(3/2)

T= TB.

C) Graduate Students Only(10 points). Show that the slope of the heat capacity

dC
derivative ( d—YY ) is discontinuous at T = Tg.

HINT: Use the appendix to show that:



1{4_5%/2(2)_ggyz<z>_z<gw<z>>zg1;z<z>]forT>T
i) R ST

45 V
?NT)?C(S/Z) for T<T,

limd. (exper)= F(ll_vv) for g,,,(1)andg., (1), with(1/2)=7"*,T(3/2)=7"* /2.
o

a—0
L e

B
¢, :1_595/2(2)_293/2(2)
NkB 493/2(2) 491/2(2)

| [fﬁ] _EL[%] Eg_/[ag_/] _gi[%]
Nk, oT | = 4 g, oT | ~4g\or ) 4g,( oT )
g\ T x
2
From appendix,[%] :—%gg/z(z){%J :_%%’
Ny Ny Iz

1 (aCVJ _ 4510y 4510s 2719y

[agmj 399, M
NV

For T <Tjg,

For T = Tk,

oT 2T 9., _ﬂlgj/zg-l/z
8T 913/2
2
Combining, 1 [acv] 1 4_595/2(2)_293/2(2)_2(‘93/2(2)) g‘l?{z(z) .
NkB T Ny T 8g3/2(z) 491/2(2) 8 (91/2(2))

AtT=Tg,z=1, we have

1 (BCV] _1{45“5/2) 9C(3/2)_27(C(3/2))291/2(1)] and from before

Nk, \ oT , - T,| 8 C(3/2)_4 91/2(1) 8 (91/2(1))3

() _1{%4(5/2)_27(4(3/2))291/2(11,

"Nk, ar T,| 8 §(3/2) 8 (91/2(1))3

we showed, 91/2(1) =oo



r(1- 172 1/2
( V)’gl/Z(l) 21/2’9—1/2(1)?‘%’

R Uy f_(C(s/z))Z
(91,2(1))3 (¢ 2a3/2£a3/2J o

approaching transition temperature, T = Tg + 0 from above

L(BL] 1] a54(5/2) 27(¢(3/2))

Forv=-%,Y% ,use 00 > O—>gv(expa):

, which gives

. From earlier,approaching transition

or ), T,[8¢(3/2) 16 =
T:TB+0
aC 5/2
temperature, T = Ty — 0 from below, [B_TI'/J = %SkBV% , which can be combines
T:TB—ON
3/2 aC, 5/2
with N = VC( / ) (valid for T>Tp), glves 1 =4_5iC( / ) .
T 8 T,¢(3/2)
T=T, -0
2
aC aC c(3/2
This gives finally, L - L = EM , which verifies that the
Nk, \ oT oT 16 T
T=T,-0 , T=T,+0

heat capacity is discontinuous at T = Tg.

Problem 7) 3D Ultra-relativistic BE gas with dispersion relatione=ap), a is a constant.
In this problem neglect the spin in all calculations.
4

e,
hd?

A) (5 points) Show that the density of state is D(e) =V

. . |4 oy g . .
As always start with quantum countng(..) — F47rp2dp , with dispersion relation

4

e,
ha®

£=ap—>dp=d£/a,2( )+:4np2dp—hv 4relde , andD( ) 1%

B) (5 points) ShowN:J:de = exptﬁe)— D(s) a%: b[%} 1 9o, (z) , where b, m;

and m; are constants that you are expected to determine.
_AnV

- -[ e — exp( - . with substitution x = e
4V 2! ¢ - 8nV 8nVk’
N:#(RBT)W r(3)IO oA e;(p(x)—l :hfm (k) g,(2). mi=m2 =3.b= s



C) (5 points) Derive equations for the critical temperature, Tp, and the number of
particles in the ground state, Ny, that is analogous to equation 9.51 and 9.52.

8V
na®
number of atoms in the excited states, and right at the transition temperature, T = Tg, the
total number of atoms N = N, number of atoms in the excited states:

N\hd 1 .
izzz (kBTB )3 4 (3) — T; = (—J—a— . The transition temperature is

v )8k ¢(3)
T _[NJl/Bha.
P 8rg(3)v ) K,

Below the transition temperature T < Ty, macroscopic occupation of the ground state

ForT<Tg,z=1, and g3(1) = {(3) =1.20206, and N, = (kBT)3Z_,'(3) , where N is the

N =

gives the number of particles in the ground state as N = <n1> =N-N_, where I note that

the textbook uses <”1> , instead of the Ny that I usually employed to describe the number

of particles in the ground state.

1
NPRRVIE -7 Dy )\ N S R R N O
Combining N = g (kBT) é’(3)]\”13( v 87th C(3)J > with T; _[ 1% J87rk; 5(3) ’

3 3
We obtain, N =N(T1} ,andN =N-N_=N 1_(711j

B B

X v-1

F(V)J.: z exp(x)—l '

APPENDIX Bose-Einstein(BE) function: g =

2 3 4
Expansion form, g = Z+2—v+ §+E+.... , 1<z <0. High T (classical), g =z, small z.

Low temperature,z—1,g (1)=_(v ) the Riemann-Zeta function.
p g,

3/2
3D BE gas with dispersion relation £ = % , D(g) = M e,
-~ Dle)de Vg. |z PV . Vg, (z
:J.o = ex(p()ﬁe)—l = 3123( ) , and kBT =—J.0 deD(s)ln(l—zexp(—ﬁe)):—S;L/z( ) ,

h )
A=—F—. <E> = —[ﬂj ,q= Ll . Heat capacity, constant volume,
\ /ankBT aB), kT



J(E) oH .
C,= 8—T , constant pressure,C, = B_T , Enthalpy H = <E >+PV . Using above
NV N,P

AT Jo 5 C) S
wecanshow<E> kT—g ()—ZNkBng/Z(Z),alsoPV—3<E>.

Calculating Cy is complicated by the fact that <E > is a function of T and z (or V), but we

do not know the explicit for of the fugacity z= exp( ﬁe) . Hence

C[@J 3| Selt) g1 %] _Tg;/z@(ag;z] |
NV g3/2(z) ‘93/2(2) NV g3/2(z) NV

0 d Vg, |z
We must find T and s . Start with N = %/—ZH -9 (Z): ﬂ)f; , and
aT /l 3/2
NV NV

oT

dz

d d
WhiChgiVeS[ g3/2] = g3/2(a_2] :—193/2(z)%(a_zJ :_Zi&
or )~ dz\ar),, 2T or),,” 2y,
{895/2} :ng/z (a_zj :_ig?Z;/Z and[agl/z] :_ig3/2g—1/2
oT o dz \dT ), , 2Ty, oT N‘V 2T g,

z
Using the above relations, ——= 159y 2( ) _9 9 (
Nk, 4 93/2(2) 4 91/2(
Special Behavior of BE gas at Low Temperature

d 2 d
A o T2 e[ﬂJ :—igm(z). But using, gv(z):z+%+...az I =9, >
NV

4

At Low temperature, z — 1 »9, (z 1) C( ) Some values areé’( ):7;2 C(4):%;
5(6) 97165'(;'(3j 2.61328; C( j 1.34349; C( j 1.12673; (3) 1.20206;

£(5)=1.03693;£(7)=1.00835.

Some values of v have special behaviorasz—1,0or ¢ -0 z= exp( ﬁ,u) =exp—o.

g esp-c)= "L S0 o o))

- a—0



