
PHYS4171-Statistical Mechanics and Thermal PhysFall 2017, Assignment #6 
Problem 1) Problem 14 Chapter 9 (10 points) 

From 9.29, gravitational pressure
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From 9.30, the degenerate gas pressure is
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 , where m is 

the mass of an electron. If we assume that the star is made up of He4 (2 protons + 2 

neutrons), then the number of nucleons (protons or neutrons) in the star is about
	
Nn =

M
mp

, 

where M is the “effective” mass of the star, and 		mp =1.67×10−27kg is the mass of a 
nucleon. Since there are 2 electrons per He4, the number of elcctrons in the star is 
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At equilibrium the two pressures must be equal: 
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, where		 M⊙ =1.9891×10
30kg is the 

mass of the sun, and 		 R⊙ =6.957×10
8m is the radius of the sun, and
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		C = 5.068×10−67( )−1 1.7655×10−50( ) 1.143×10−19( ) =3.98×10−3   



For 40 ERiB, Table 9.3 gives,		 CERiB = R/R
⊙( ) M /M⊙( )1/3 = 0.013( ) 0.447( )1/3 =1×10−2  

For Sirius B, Table 9.3 gives,		 CSiB = R/R
⊙( ) M /M⊙( )1/3 = 0.0073( ) 1.05( )1/3 =7.4×10−3  

At least it is to the same order of magnitude. 
  
Problem 2) Problem 20 Chapter 9 (10 points).  

A) Equation 9.51, gives BE condensation temperature
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For		
23Na→m=23×1.67×10−27kg , with		 N /V( ) =1014 ÷1×10−6m3 =1020m−3 , which 

gives
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B) Use equation 9.52, the number of atoms in the ground state is
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90% to be in the ground state
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→T =0.12/3TB =3.2×10−7K . 

C) For		
21Na→m=21×1.67×10−27kg , with		 N /V( ) =1014 ÷1×10−6m3 =1020m−3 , which 

gives
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For		
23Na→m=23×1.67×10−27kg , with		 N /V( ) =1014 ÷1×10−6m3 =1020m−3 , which 

gives
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From 9.55, below the transition temperature:
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which if we neglect the ground-state part gives the heat capacity below the transition 

temperature
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, and CV increases with T(see fig 9.8). 

Above transition temperature, 9.56 gives 
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decreases with T (see Fig 9.8). 
i) 100%		23Na . The temperature of the gas is 		1.3×10−6K , which is below the transition 
temperature of both isotopes, and of		23Na  . This means that the gas will be in the BE 
condensate state, and Cv will increase with T in cases i. 
ii) 50%		23Na and 50%		21Na . Here the number density will be altered since compared to 
part i, there are only half the amount of each identical bosons for the same volume: 

		 N /V( ) =5×1013 ÷1×10−6m3 =5×1019m−3 . This gives 

		 
TB

23Na = 1
π 1.381×10−23 J /K( ) 2.612( )2/3

6.626×10−34 J i s( )2
2 3.841×10−26kg( ) 5×1019m−3( )2/3 = 9.4×10−7K . 
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21Na = 1
π 1.381×10−23 J /K( ) 2.612( )2/3

6.626×10−34 J i s( )2
2 3.507×10−26kg( ) 5×10

19m−3( )2/3 =1×10−6K . 

In both cases the transition temperatures are above the actual temperature		1.3×10−6K , 
and the system is not in the BE condensate state, and Cv will decrease with T in cases ii. 
Problem 3) Problem 5 Chapter 10 (10 points) 
A) Start wit equation 10.11,	ΔE =TΔS −PΔV + µΔN , which means that the internal 

energy 		E S ,V ,N( ) is naturally a function of S, V, and N. If we want the Emthalpy to be a 
natural function S, P and N, we must eliminate 	ΔV , by defining the enthalpy as
	H = E +PV→ΔH = ΔE +PΔV +VΔP , which combines with	ΔE =TΔS −PΔV + µΔN , 

gives		ΔH =TΔS −PΔV + µΔN +PΔV +VΔP =TΔS +VΔP + µΔN→H S ,P ,N( ) .  
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Comparing with	ΔH =TΔS +VΔP + µΔN , 
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Problem 4) Problem 6 Chapter 10 (10 points) 
 



Read section 6.2 on photon, where the density of state of EM modes in the frequency 

range	v to	v +dv is
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(see equation 6.15) 
A) Note that from section 7.1, equation 7.9, the Helmholtz Free Energy is

	
F = E −TS , 

and equation 7.10, it is		F = −kBT lnZN , where	ZN is the N-particle partition function. For 

identical non-interacting distinguishable particles		ZN = Z1
N , where		Z1 is the one-

particle partition function. In the case where the particles are identical non-interacting 
indistinguishable particles		ZN = Z1

N /N! , where 1/N! is the Gibb’s over-counting factor. 
This means that the N-particle Helmholtz free energy is essentially additive,

		
F N( ) = −kBT lnZ1N = −kBT lnZ1
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N

∑ + 	constant , where it is clear that		Z1 = Z2 = Z3...= ZN . 

Now the partition function is the summation of all possible Boltzman factor,	exp −βε( ) , 

which is
		
Z = exp −βε( )

ε
∑ , where it is possible for two or more states to have the same 

energy. For indistinguishable and identical photons of a single mode with frequency, v, 
and energy	εn = nhv , where n is the number of photons of that mode, the partition 

function is simply
		
Z = exp −βnhv( )
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that the system can have any number of photons, since the chemical potential of a photon 
system is zero	µ =0 (see below). In the case where there are more than one mode of 
photons with frequency	vi and energy	nihvi , where	ni is the number of photons in the ith 

mode, the partition function should be		 Z = Z1Z2Z3 i iZi i i ,where
		
Zi =

1
1−exp −βhvi( ) . Note 

that the multiplicative property is occurs since photons do not interact, and the absence of 
1/N! is explained by the distinguishability of the different modes. Hence the Helmholtz 

free energy of the photon system
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previous treatments of free non-interacting particles discrete summations are transformed 
to integrals
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Here we transform
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B)
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see that the first term vanishes. For the second term we note that Taylor series expansion

		ln 1− x( )≈ −x if x is really small, and since		exp −βh∞( ) is definitely really small
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since		exp −βh∞( )  approaches zero faster than	∞3 approaches infinity. Hence we obtain 
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From appendix,
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C) Using equations 10.15,
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Problem 5) Problem 8 Chapter 10 (10 points) 
Read and understand section 10.4 on the Gibb’s Free Energy:	G = E −TS +PV = F +PV ;
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A) For		G = −kBTN ln aT
5/2 /P( ) , compute the entropy. 
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B) For		G = −kBTN ln aT
5/2 /P( ) , compute the heat capacity at constant pressure: 
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results of A),
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ideal gas equation. 



D) Use	G = E −TS +PV→ E =G+TS −PV , 

		
E = −NkBT ln

aT3/2

P
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equipartition theorem for monatomic ideal gas. Hence it is clear that
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P
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⎞

⎠⎟
 is the Gibb’s free energy of a classical monatomic ideal gas. 

 
Problem 6) 3D Bose-Einstein (BE) Gas, at critical temperature: In class we showed 

that 
		
N
V

=
g3/2 z( )
λ3 , 

		
PV
kBT

=
g5/2 z( )
λ3 ,

		
E = 32NkBT

g5/2 z( )
g3/2 z( ) , with 

		λ = h2 / 2πmkBT( )( )1/2 , and		z = exp βµ( ) . We showed that a phase transition occurs at 

critical temperature, TB. Below TB, a macroscopically large number of BE particles 
occupy the ground state, ε = 0. The phase transition can be detected by measuring the 
heat capacity near T = TB. Calculation in class showed that: 

 
		

CV
NkB

= 154
g5/2 z( )
g3/2 z( ) −

9
4
g3/2 z( )
g1/2 z( ) ,T >TB , 

 
		
CV
NkB

= 154
V
N
ζ 5/2( )

λ3 ,T ≤TB   

A) (5 points) Show that for T ≤ TB,
		
CV =

15
4 NekB

ζ 5/2( )
ζ 3/2( ) , where Ne is the number of BE 

particles in the excited state. Explain why this relation obeys the third law of 
thermodynamics. 

Start with
		
E = 32NkBT

g5/2 z( )
g3/2 z( ) and

		
N
V

=
g3/2 z( )
λ3 , which can be recombine to

		
E = 32

N
g3/2 z( )kBTg5/2 z( ) = 3VkBTg5/2 z( )

2λ3/2 . For	T ≤TB , z = 1,		g3/2 1( ) =ζ 3/2( ) , and the 

number of particles in the excited states is
		
Ne =V

ζ 3/2( )
λ3 , where

		
λ = h

2πmkBT
, the rest 

of the particle must then be in the ground state

		
N0 = n1 =N −Ne =N 1− T

TB

⎛

⎝⎜
⎞

⎠⎟

3/2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

, as 

given by equation 9.52. Similarly For	T ≤TB , z = 1,		g3/2 1( ) =ζ 3/2( ) , and



		g5/2 1( ) =ζ 5/2( ) , so
		
E =

3VkBTg5/2 z( )
2λ3/2 . It is easy to see that		 E ∝T5/2 , and

		
CV =

∂ E
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

=
15VkB g5/2 z( )

4λ3/2 . But we showed that, T < TB, 

		
Ne =V

ζ 3/2( )
λ3 → V

λ3 =
Ne

ζ 3/2( )→CV =
15
4 NekB

ζ 5/2( )
ζ 3/2( ) .  

From earlier, the number of particles in the excited states is
		
Ne =V

ζ 3/2( )
λ3 , with

		
λ = h

2πmkBT
, so that		Ne ∝T

3/2 , so that as		T→0,Ne =0and Cv = 0, which is one of the 

third law of Thermodynamics. 
 
B) (5 points)  Show that the heat capacity, CV, is continuous  at the critical temperature, 
T = TB − i.e. 		CV T =TB +0( ) =CV T =TB −0( ) ! 

HINT: Look in the appendix at T = TB, z = 1, but it is possible write		z =1= exp −α( ) , 

which is equivalent to 
		
α = − µ

kBT
→0 , and the appendix note,

		 α→0
limgv expα( )≈ Γ 1− v( )

α 1−v to 

show that		g1/2 1( )→∞ .  

Start with
		

CV
NkB

= 154
g5/2 z( )
g3/2 z( ) −

9
4
g3/2 z( )
g1/2 z( ) ,T >TB , where at T = TB, z = 1, 		gv 1( ) =ζ v( ) , for v 

> 1. For v = ½ , the hint states that		g1/2 1( )→∞ , so that
		

CV
NkB

= 154
ζ 5/2( )
ζ 3/2( ) for		T =TB +0 , 

but we know that at T = TB, 	N =Ne  all particles are in the excited states, which gives, 

		

CV
NkB

= 154 NekB
ζ 5/2( )
ζ 3/2( ) , which is the same value as for 		T =TB +0 , so CV  is continuous at 

T = TB. 
 
C) Graduate Students Only(10 points). Show that the slope of the heat capacity 

derivative (
	

dCV
dT

 ) is discontinuous at T = TB. 

HINT: Use the appendix to show that: 



 

		

1
NkB

∂CV
∂T

⎛

⎝⎜
⎞

⎠⎟ N ,V
=

1
T

45
8
g5/2 z( )
g3/2 z( ) −

9
4
g3/2 z( )
g1/2 z( ) −

27
8

g3/2 z( )( )2 g−1/2 z( )
g1/2 z( )( )3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	for	T >TB

45
8

V
NTλ3ζ 5/2( ) 																																																	for	T ≤TB

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

, and 

		 α→0
limgv expα( )≈ Γ 1− v( )

α 1−v for 		g1/2 1( )and		g−1/2 1( ) , with	Γ 1/2( ) =π 1/2 ,	Γ 3/2( ) =π 1/2 /2 . 

For T ≤ TB,
		

CV
NkB

= 154
V
N
ζ 5/2( )

λ3 →
∂CV
∂T

⎛

⎝⎜
⎞

⎠⎟
= 458 kB

V
T
ζ 5/2( )

λ3 , where 		 1/λ
3( )∝T3/2 . 

For T ≥ TB,
		

CV
NkB

= 154
g5/2 z( )
g3/2 z( ) −

9
4
g3/2 z( )
g1/2 z( )  

		

1
NkB

∂CV
∂T

⎛

⎝⎜
⎞

⎠⎟ N ,V
= 154

1
g3/2

∂g5/2
∂T

⎛

⎝
⎜

⎞

⎠
⎟
V ,N

− 154
g5/2
g3/2
2

∂g3/2
∂T

⎛

⎝
⎜

⎞

⎠
⎟
V ,N

− 94
1
g1/2

∂g3/2
∂T

⎛

⎝
⎜

⎞

⎠
⎟
V ,N

																							+ 94
g3/2
g1/2
2

∂g1/2
∂T

⎛

⎝
⎜

⎞

⎠
⎟
V ,N

, 

 

 From appendix,

		

∂g3/2
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

= − 3
2T g3/2 z( ) ,

		

∂g5/2
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

= − 3
2T

g3/2
2

g1/2
,

		

∂g1/2
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

= − 3
2T

g3/2g−1/2
g1/2

→

		

1
NkB

∂CV
∂T

⎛

⎝⎜
⎞

⎠⎟ N ,V
= −458

1
T
g3/2
g1/2

+ 458
1
T
g5/2
g3/2

+ 278
1
T
g3/2
g1/2

																						− 278
1
T
g3/2
2 g−1/2
g1/2
3

.  

Combining,

		

1
NkB

∂CV
∂T

⎛

⎝⎜
⎞

⎠⎟ N ,V
= 1
T

45
8
g5/2 z( )
g3/2 z( ) −

9
4
g3/2 z( )
g1/2 z( ) −

27
8

g3/2 z( )( )2 g−1/2 z( )
g1/2 z( )( )3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	 .  

At T = TB, z = 1, we have 

		

1
NkB

∂CV
∂T

⎛

⎝⎜
⎞

⎠⎟ N ,V
= 1
TB

45
8
ζ 5/2( )
ζ 3/2( ) −

9
4
ζ 3/2( )
g1/2 1( ) −

27
8

ζ 3/2( )( )2 g−1/2 1( )
g1/2 1( )( )3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	 , and from before 

we showed,		g1/2 1( ) =∞ ,

		

1
NkB

∂CV
∂T

⎛

⎝⎜
⎞

⎠⎟ N ,V
= 1
TB

45
8
ζ 5/2( )
ζ 3/2( ) −

27
8

ζ 3/2( )( )2 g−1/2 1( )
g1/2 1( )( )3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	 , 



For v = −½ , ½ , use α → 0→
		
gv expα( )≈ Γ 1− v( )

α 1−v ,
		
g1/2 1( )≈ π 1/2

α 1/2 ,
		
g−1/2 1( )≈ π 1/2

2α 3/2 , 

		

ζ 3/2( )( )2 g−1/2 1( )
g1/2 1( )( )3

= ζ 3/2( )( )2 π 1/2

2α 3/2
π 3/2

α 3/2
⎛

⎝⎜
⎞

⎠⎟

−1

=
ζ 3/2( )( )2
2π , which gives 

approaching transition temperature, T = TB + 0 from above 

		

1
NkB

∂CV
∂T

⎛

⎝⎜
⎞

⎠⎟ N ,V
T=TB+0

= 1
TB

45
8
ζ 5/2( )
ζ 3/2( ) −

27
16

ζ 3/2( )( )2
π

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	 . From earlier,approaching transition 

temperature, T = TB − 0 from below,

		

∂CV
∂T

⎛

⎝⎜
⎞

⎠⎟ N ,V
T=TB−0

= 458 kBV
ζ 5/2( )

λ3 , which can be combines 

with
		
N =V

ζ 3/2( )
λ3 (valid for T≥TB), gives

		

1
NkB

∂CV
∂T

⎛

⎝⎜
⎞

⎠⎟ N ,V
T=TB−0

= 458
1
TB

ζ 5/2( )
ζ 3/2( ) . 

This gives finally,

		

1
NkB

∂CV
∂T

⎛

⎝⎜
⎞

⎠⎟ N ,V
T=TB−0

− 1
NkB

∂CV
∂T

⎛

⎝⎜
⎞

⎠⎟ N ,V
T=TB+0

= 2716
ζ 3/2( )( )2
TBπ

 , which verifies that the 

heat capacity is discontinuous at T = TB. 
 
Problem 7) 3D Ultra-relativistic BE gas with dispersion relation	ε = ap , a is a constant. 
In this problem neglect the spin in all calculations. 

A) (5 points) Show that the density of state is 
		
D ε( ) =V 4π

h3a3
ε 2 .  

As always start with quantum counting
		

..( )∑ → V
h3
4πp2dp , with dispersion relation

		ε = ap→dp= dε /a ,
		

..( )∑ → V
h3
4πp2dp= V

h3a3
4πε 2dε , and

		
D ε( ) =V 4π

h3a3
ε 2 . 

B) (5 points) Show
		
N = dε 1

z−1 exp βε( )−1D ε( )0

∞

∫ → N
V

= b 1
β

⎛
⎝⎜

⎞
⎠⎟

m1

gm2 z( ) , where b, m1 

and m2 are constants that you are expected to determine.  

		
N = 4πV

h3a3
dε ε 2

z−1 exp βε( )−10

∞

∫ , with substitution	x = βε ,

		
N = 4πV

h3a3
kBT( )3/2 2!

Γ 3( ) dε x3−1

z−1 exp x( )−1 =0

∞

∫
8πV
h3a3

kBT( )3 g3 z( ) , m1 = m2 = 3,
		
b=

8πVkB3
h3a3

. 

 



C) (5 points) Derive equations for the critical temperature, TB, and the number of 
particles in the ground state, N0, that is analogous to equation 9.51 and 9.52. 

For T ≤ TB, z = 1, and		g3 1( ) =ζ 3( ) =1.20206 , and
		
Ne =

8πV
h3a3

kBT( )3ζ 3( ) , where Ne is the 

number of atoms in the excited states, and right at the transition temperature, T = TB, the 
total number of atoms N = Ne number of atoms in the excited states: 

		
N = 8πV

h3a3
kBTB( )3ζ 3( )→TB

3 = N
V

⎛
⎝⎜

⎞
⎠⎟
h3a3

8πkB3
1

ζ 3( ) . The transition temperature is

		
TB =

N
8πζ 3( )V

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/3
ha
kB

. 

Below the transition temperature T < TB, macroscopic occupation of the ground state 
gives the number of particles in the ground state as		N0 = n1 =N −Ne , where I note that 

the textbook uses		 n1 , instead of the N0 that I usually employed to describe the number 
of particles in the ground state. 

Combining
		
Ne =

8πV
h3a3

kBT( )3ζ 3( ) =NT3 N
V
h3a3

8πkB3
1

ζ 3( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1

, with
		
TB
3 = N

V
⎛
⎝⎜

⎞
⎠⎟
h3a3

8πkB3
1

ζ 3( ) , 

We obtain,
		
Ne =N

T
TB

⎛

⎝⎜
⎞

⎠⎟

3

, and

		
N0 =N −Ne =N 1− T

TB

⎛

⎝⎜
⎞

⎠⎟

3⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. 

APPENDIX Bose-Einstein(BE) function:
		
gv =

1
Γ v( )

xv−1

z−1 exp x( )−10

∞

∫ . 

Expansion form,
		
gv = z +

z2

2v +
z3

3v +
z4

4v + .... , 1< z <0. High T (classical),	gv ≈ z , small z. 

Low temperature,		z→1 ,		gv 1( ) =ζ v( ) the Riemann-Zeta function. 

3D BE gas with dispersion relation
		
ε = p2

2m ,
		
D ε( ) = 2πV 2m( )3/2

h3
ε1/2 ,

		
N =

D ε( )dε
z−1 exp βε( )−10

∞

∫ =
Vg3/2 z( )

λ3 , and
		
PV
kBT

= − dεD ε( )ln 1− zexp −βε( )( )0

∞

∫ =
Vg5/2 z( )

λ3 , 

		
λ = h

2πmkBT
. 
		
E = − ∂q

∂β
⎛
⎝⎜

⎞
⎠⎟ z ,V

, 	q= PV
kBT

. Heat capacity, constant volume,



		
CV =

∂ E
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

, constant pressure,
		
CP =

∂H
∂T

⎛
⎝⎜

⎞
⎠⎟ N ,P

, Enthalpy
	
H = E +PV . Using above 

we can show
		
E = 32kBT

V
λ3 g5/2 z( ) = 32NkBT

g5/2 z( )
g3/2 z( ) , also

		
PV = 23 E . 

Calculating CV is complicated by the fact that 
	
E is a function of T and z (or V), but we 

do not know the explicit for of the fugacity		z = exp βε( ) . Hence 

		
CV =

∂ E
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

= 32NkB
g5/2 z( )
g3/2 z( ) +T

1
g3/2 z( )

∂g5/2
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

−T
g5/2 z( )
g3/2
2 z( )

∂g3/2
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

. 

We must find

		

∂g3/2
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

and

		

∂g5/2
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

. Start with
		
N =

Vg3/2 z( )
λ3 → g3/2 z( ) = NV λ3 , and

		
λ3 ∝T −3/2→

∂g3/2
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

= − 3
2T g3/2 z( ) . But using,

		
gv z( ) = z + z

2

2v + ...→ z
dgv
dz

= gv−1 , 

which gives

		

∂g3/2
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

=
dg3/2
dz

∂z
∂T

⎛
⎝⎜

⎞
⎠⎟ N ,V

= − 3
2T g3/2 z( )→ ∂z

∂T
⎛
⎝⎜

⎞
⎠⎟ N ,V

= −z 32T
g3/2
g1/2

.  

		

∂g5/2
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

=
dg5/2
dz

∂z
∂T

⎛
⎝⎜

⎞
⎠⎟ N ,V

= − 3
2T

g3/2
2

g1/2
, and

		

∂g1/2
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

= − 3
2T

g3/2g−1/2
g1/2

. 

Using the above relations,
		

CV
NkB

= 154
g5/2 z( )
g3/2 z( ) −

9
4
g3/2 z( )
g1/2 z( ) ,T >TB . 

Special Behavior of BE gas at Low Temperature 

At Low temperature,		z→1 ,		gv z =1( ) =ζ v( ) . Some values are
	
ζ 2( ) = π 2

6 ;
	
ζ 4( ) = π 4

90 ;

	
ζ 6( ) = π 6

945 ;
	
ζ 3
2

⎛
⎝⎜

⎞
⎠⎟
=2.61328 ;

	
ζ 5
2

⎛
⎝⎜

⎞
⎠⎟
=1.34349 ;

	
ζ 7
2

⎛
⎝⎜

⎞
⎠⎟
=1.12673 ;	ζ 3( ) =1.20206 ;

	ζ 5( ) =1.03693;	ζ 7( ) =1.00835 . 

Some values of v have special behavior as		z→1 , or 	α →0  		z = exp βµ( )= exp−α . 

		
gv exp−α( ) = Γ 1− v( )

α 1−v +
−1( )i
i! ζ v − i( )α i

i=0

∞

∑ ,
		 α→0
limgv expα( )≈ Γ 1− v( )

α 1−v . 

 
 
 
 


