
PHYS4171-Statistical Mechanics and Thermal Physics 
Fall 2017 Assignment #5 Due on November 22, 2017. 

Problem 1) Problem 4 Chapter 9 (10 points) This problem consider a system with 
density of state 		D ε( ) = ε / ε0

2( ) . 

A) To find the Fermi energy, εF, use the method of equation 9.8 and 9.9: 

		
N = dεD ε( )0

εF∫ = 1
ε0
2 dεε

0

εF∫ =
εF
2

2ε02
→εF = 2Nε0  

B) Use 9.16

		
µ T( ) = εF − π

2

6
D/ εF( )
D εF( ) kBT( )2 = εF − π

2

6
1/ε02( )
εF /ε02( ) kBT( )2 = εF 1− π

2

6
kBT
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⎢
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⎥
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. 

Use 9.16,

		
µ T( ) = εF − π

2

6
D/ εF( )
D εF( ) kBT( )2 = εF − π

2

6
1/ε02( )
εF /ε02( ) kBT( )2 = εF 1− π

2

6
kBT
εF

⎛

⎝⎜
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⎢
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⎤
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⎥

.  

Alternative Solution: 

		
N =

D ε( )dε
z−1 exp βε( )+10

∞

∫ =
kBT( )2
ε0
2

1
Γ 2( )

x2−1dx
z−1 exp x( )+10

∞

∫ =
kBT
ε0

⎛

⎝⎜
⎞

⎠⎟

2

f2 z( ) . 

 

Use

		
fv z( ) = ξ v

Γ v +1( ) 1+ v v −1( )π
2

6
1
ξ2

+ ...⎡

⎣
⎢

⎤

⎦
⎥→ f2 z( ) = µ /kBT( )2
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3
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µ

⎛
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Solving,

		

µ
kBT

⎛

⎝⎜
⎞
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2

=2 f2 z( ) 1+ π
2

3
kBT
µ

⎛
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µ
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2
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⎥
⎥

−1

, 

 

		
µ = 2Nε0 1+

π 2

3
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µ
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Now Taylor expand to get

		
µ = εF 1−

π 2

6
kBT
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C) Use (9.12),
		
Egs = εD ε( )0

εF∫ dε = ε 2

ε0
20

εF∫ dε =
εF
3

3ε02
, and part A,

		

εF
2

ε0
2 =2N→ Egs =

2
3NεF .  

From 9.18,

		
E = Egs +

π 2

6 D εF( ) kBT( )2 = 23NεF +
π 2

6
εF
2

ε0
2
εF
2

εF
3 kBT( )2 = 23NεF 1+ π

2

2
kBT
εF

⎛

⎝⎜
⎞

⎠⎟
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⎜
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⎠
⎟
⎟
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From eqn 9.19,
		

CV
kB

= π 2

3 D εF( )kBT = π 2

3
εF
ε0
2 kB

2T = π 2

3
εF
ε0

⎛

⎝⎜
⎞

⎠⎟

2
T

εF /kB
⎛

⎝⎜
⎞

⎠⎟
= π 2

3
εF
ε0

⎛

⎝⎜
⎞

⎠⎟

2
T
TF

⎛

⎝⎜
⎞

⎠⎟
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Using		εF = 2Nε0 ,
		

CV
kB

= 23Nπ
2 T
TF

⎛

⎝⎜
⎞

⎠⎟
. 

Note the question ask that the answers must be expressed in terms kB, N, ε0, and T. The 
above forms are ok if you show how the expressions are transformed into		εF = 2Nε0 . 
Alternative Solution: 

		
lnΞ= PV

kBT
= dεD ε( )0

∞

∫ ln 1+ zexp −βε( )( ) = 1
ε0
2 dεε ln 1+ zexp −βε( )( )0

∞

∫  

Integrating by parts
		
lnΞ= 1

2ε02
β ε 2dε

z−1 exp βε( )+10

∞

∫ = 12
kBT
ε0

⎛

⎝⎜
⎞

⎠⎟

2
2

Γ 3( )
x3−1dx

z−1 exp x( )+10

∞

∫ , 

		
lnΞ=

kBT
ε0

⎛

⎝⎜
⎞

⎠⎟

2

f3 z( ) = βε0( )−2 f3 z( ) . Use
		
E = − ∂lnΞ

∂β
⎛
⎝⎜

⎞
⎠⎟
=2kBT

kBT
ε0

⎛
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2

f3 z( )   

From earlier
		
N =

kBT
ε0

⎛

⎝⎜
⎞

⎠⎟

2

f2 z( )→ E =2NkBT
f3 z( )
f2 z( ) . and 

		
f2 z( ) = µ /kBT( )2
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µ
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f3 z( ) = µ /kBT( )3

3! 1+π 2 kBT
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E =2NkBT

f3 z( )
f2 z( ) =2NkBT

µ /kBT( )
3 1+π 2 kBT

µ
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. 

Now use the result of B,

		
µ = εF 1−

π 2

6
kBT
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. 

		
E = 23NkBT

εF
kBT

1− π
2

6
kBT
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⎛

⎝⎜
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⎥
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2
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⎝⎜
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⎦

⎥
⎥

−1

, where we are only 

including terms that will contribute up to		 kBT( )2 . Now Taylor expand 

		
E = 23NεF 1+ −π

2

6 +π 2 − π
2

3
⎛

⎝⎜
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CV =

∂ E
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

= 23π
2N
kB
2T
εF

→
CV
kB

= 23Nπ
2 T
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⎛

⎝⎜
⎞

⎠⎟
.  

 



Problem 2) Problem 6 Chapter 9 (10 points).  
For a system where fermions have energy	εα =αε0 , with α a positive integer. 

A) It is clear that 		εF =Nε0 . For N = 1020,		ε0 =10
−30 J ,		εF =10

−18 J =6.25eV . 

B) At T = 300,		 kBT =8.617×10−5eV /K ×300K =0.026eV ≪ εF . Basically,	 T≪TF so this 
is a quantum gas.  It is clear that just like the 1D harmonic the density of state is constant 
and is simply		D ε( ) =1/ε0 . 

Use equation 9.12,
		
Egs = εD ε( )0

εF∫ dε = ε
ε00

εF∫ dε =
εF
2

2ε0
= N2 εF . From 9.18,

		
E = Egs +

π 2

6 D εF( ) kBT( )2 = 12NεF +
π 2

6
N
N
1
ε0

εF
εF

kBT( )2 = NεF2 1+ π
2

3
kBT
εF

⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. 

From equation 9.19,
		

CV
kB

= π 2

3 D εF( )kB2T = π 2

3 N
kBT
εF

= Nπ
2

3
T
TF

⎛

⎝⎜
⎞

⎠⎟
. 

Alternative Solution for B 

		
N =

D ε( )dε
z−1 exp βε( )+10

∞

∫ =
kBT( )
ε0

1
Γ 1( )

x1−1dx
z−1 exp x( )+10

∞

∫ =
kBT
ε0

⎛

⎝⎜
⎞

⎠⎟
f1 z( ) . 

Use
		
fv z( ) = ξ v

Γ v +1( ) 1+ v v −1( )π
2

6
1
ξ2

+ ...⎡

⎣
⎢

⎤

⎦
⎥→ f1 z( ) = µ /kBT( )

1! 1+ ..⎡⎣ ⎤⎦ . From a)		εF =Nε0   

		
N =

kBT
ε0

f1 z( ) = kBTε0
µ
kBT

⎛

⎝⎜
⎞

⎠⎟
→ µ =Nε0 = εF . 

		
lnΞ= PV

kBT
= dεD ε( )0

∞

∫ ln 1+ zexp −βε( )( ) = 1
ε0

dεε ln 1+ zexp −βε( )( )0

∞

∫  

Integrating by parts
		
lnΞ= 1

ε0
β ε1dε

z−1 exp βε( )+10

∞

∫ =
kBT
ε0

⎛

⎝⎜
⎞

⎠⎟
1

Γ 2( )
x2−1dx

z−1 exp x( )+10

∞

∫ , 

		
lnΞ=

kBT
ε0

⎛

⎝⎜
⎞

⎠⎟
f2 z( ) = βε0( )−1 f2 z( ) . Use

		
E = − ∂lnΞ

∂β
⎛
⎝⎜

⎞
⎠⎟
= kBT

kBT
ε0

⎛

⎝⎜
⎞

⎠⎟
f2 z( )   

From earlier
		
N =

kBT
ε0

⎛

⎝⎜
⎞

⎠⎟
f1 z( )→ E =NkBT

f2 z( )
f1 z( ) . Use

		
f1 z( ) = µ

kBT
⎛

⎝⎜
⎞

⎠⎟
  

		
f2 z( ) = µ /kBT( )2

2! 1+ π
2

3
kBT
µ

⎛

⎝⎜
⎞

⎠⎟

2

+ ..
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

.

		
E =NkBT

µ
2kBT

1+ π
2

3
kBT
µ

⎛

⎝⎜
⎞

⎠⎟

2

+ ..
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

, and using

		
µ = εF → E =

NεF
2 1+ π

2

3
kBT
εF

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

,

		
CV =

∂ E
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

→
CV
kB

= Nπ
2

3εF
T

εF /kB
⎛

⎝⎜
⎞

⎠⎟
= Nπ

2

3
T
TF

⎛

⎝⎜
⎞

⎠⎟
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Problem 3) Problem 7 Chapter 9 (10 points) 
Heating by adiabatic expansion. Initially, an ideal gas of N fermions is confined, by an 
insulated wall that does not allow heat exchanged, to a volume, Vi, and has, effectively, 
temperature zero. The volume is increased adiabatically (no heat added or removed) 
suddenly to VF. When the gas comes to equilibrium it is a classical ideal gas. 
A) What is the final temperature of the gas? 

From 9.12, energy is
		
E = 35NεF , and 9.10,

		
εF =

h2

2m
3
8π

⎛
⎝⎜

⎞
⎠⎟

2/3
N
Vi

⎛

⎝⎜
⎞

⎠⎟

2/3

→ E = 35
N5/3

Vi
2/3

h2

2m
3
8π

⎛
⎝⎜

⎞
⎠⎟

2/3

. 

At final equilibrium, since no work is done and heat is not exchanged, the equipartition 

theorem gives,
		
E = 32NkBTF =

3
5
N5/3

Vi
2/3

h2

2m
3
8π

⎛
⎝⎜

⎞
⎠⎟

2/3

→TF =
2
5
h2

2m
3
8π

⎛
⎝⎜

⎞
⎠⎟

2/3
N
Vi

⎛

⎝⎜
⎞

⎠⎟

2/3

, which is 

independent of the final volume, VF. 
B) Derive an equation for the ratio, VF/Vi and explain your reasoning? 
In class we discussed the Sackur-Tetrode equation that shows that the change in entropy 

of a classical ideal gas is

		
ΔS = SF − Si =NkB ln

VF
Vi

⎛

⎝⎜
⎞

⎠⎟
TF
Ti

⎛

⎝⎜
⎞

⎠⎟

3/2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, which for a classical 

adiabatic process, the temperature does not change, TF = Ti,
		
ΔS = SF − Si =NkB ln

VF
Vi

⎛

⎝⎜
⎞

⎠⎟
. 

Note that the textbook makes similar arguments in section 2.4 to derive equation 2.3. But 
for this system the initial entropy should be zero, if it is a quantum system at zero 
temperature, as required by the third law of thermodynamics. But if the system is a 
classical ideal gas, the initial entropy is greater than zero, unless the temperature is 
really low. This means that the actual change in entropy is

		
ΔS >NkB ln

VF
Vi

⎛

⎝⎜
⎞

⎠⎟
→ 	leading	to	inequality VF

Vi

⎛

⎝⎜
⎞

⎠⎟
< exp ΔS

NkB

⎛

⎝⎜
⎞

⎠⎟
, in this adiabatic quantum 

to classical transition, where ΔS is the actual entropy change. 
C) The title of this Heating by adiabatic expansion is an oxymoron. Explain the sense 
in which the title is a contradiction in terms, and the sense in which the title is a 
legitimate use of words. 
Answer: In adiabatic process, no heat are exchanged, hence it should be possible to heat 
the system. However it is true that there is no heat flow from the outside, or flow out of 
the system, so the process is a true adiabatic process. There also is an increase in 
temperature due to the transition from quantum to classical system. 
 
 



Problem 4) 3D Fermi Electron Gas in the High and Low Temperature Limit: In 

class we showed that 
		
N
V
= 2
λ3 f3/2 z( ) , 

		
P
kBT

= 2
λ3 f5/2 z( ) ,

		
E = 32NkBT

f5/2 z( )
f3/2 z( ) , with

		λ = h2 / 2πmkBT( )( )1/2 , and		z = exp βµ( ) . 

A) (5 points) Eq. 7.14 gives the classical chemical potential is
		
µ = −kBT ln

V
Nλ3

⎛
⎝⎜

⎞
⎠⎟

, show 

that in the classical ideal gas limit	µ <0  , and that for very dilute gas the chemical 
potential is a large negative number. Hence explain in no more than two sentences why 
		 0< z≪1 in the classical ideal gas limit. 

In dilute limit, V/N is large,
		
V
Nλ3 is large, and

		 
ln V

Nλ3
⎛
⎝⎜

⎞
⎠⎟
>1→ µ = −kBT ln

V
Nλ3

⎛
⎝⎜

⎞
⎠⎟
≪0 . 

Since
		 
z = exp βµ( )= exp − ln V

Nλ3
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
= V

Nλ3
⎛
⎝⎜

⎞
⎠⎟

−1

≪1 .   

B) (5 points) Show that in the classical ideal gas limit, the 3D Fermi Ideal gas 

relations given above becomes PV = NkBT, 		 E = 3/2( )NkBT , and
		
µ = −kBT ln

V
N
1
λ3

⎛
⎝⎜

⎞
⎠⎟

. 

HINT: use properties of 
	
fv z( )  for low z. 

		
E = 32NkBT

f5/2 z( )
f3/2 z( ) . Using the appendix,

		
f5/2 z( ) = z − z2

25/2 +
z3

35/2 + ... ≈ z ,

		
f3/2 z( ) = z − z2

23/2 +
z3

33/2 + ... ≈ z , where
		
E = 32NkBT

f5/2 z( )
f3/2 z( ) ≈

3
2NkBT

z
z
= 32NkBT . 

C) (5 points) Use the free-energy relations in the appendix to show

	
F = E −TS =Nµ −PV .  

From appendix, Helmholtz free energy
	
F = E −TS ; Gibbs	G = F +PV =Nµ ,

	
F +PV =Nµ→ E −TS +PV =Nµ→ E −TS =Nµ −PV .  

D) (5 points) In class we show that at low temperature,

		
µ = εF 1−

π 2

12
kBT
εF

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

, and 

		
E = 35NεF 1+

5π 2

12
kBT
εF

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

. Use result of C to find heat capacity

		
CV =

∂ E
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

and 

entropy S at low temperature up to linear order in temperature. Comment on whether 
your results obey the third law of thermodynamics. 



		
CV =

∂ E
∂T

⎛

⎝
⎜

⎞

⎠
⎟
N ,V

= ∂
∂T

3
5NεF 1+

5π 2

12
kBT
εF

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
N ,V

→
CV
NkB

=
π 2kBT
2εF

 . Note as T→ 0, 

		CV =0 , as required by the third law of Thermodynamics. 

For the entropy, start with,
		
N
V

= 2
λ3 f3/2 z( )→ 2V

λ3 =
N
f3/2

and

		
P
kBT

= 2
λ3 f5/2 z( )→ PV

kBT
= 2V

λ3
⎛
⎝⎜

⎞
⎠⎟
f5/2 z( ) =N f5/2

f3/2
, and

		
E = 32NkBT

f5/2 z( )
f3/2 z( ) , which means 

		
PV = 23 E . From C)

		
E −TS =Nµ −PV→TS = E +PV −Nµ→ S = 53

E
T

− Nµ
T

. Using

		
µ = εF 1−

π 2

12
kBT
εF

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

and

		
E = 35NεF 1+

5π 2

12
kBT
εF

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

, 

		
S = 53

E
T
3
5NεF 1+

5π 2

12
kBT
εF

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
− N
T
εF 1−

π 2

12
kBT
εF

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

, 

		
S
NkB

= π 2

2
kBT
εF

. Note as T→ 0, S = 0, as required by the third law of Thermodynamics. 

NOTE TO MARKER: In original version, I forgot the factor N in the relation for the 

energy

		
E = 35NεF 1+

5π 2

12
kBT
εF

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

. Please do not take off marks from students. 

Problem 5) 3D Ultra-relativistic Fermion gas with dispersion relation	ε = ap , a is a 
constant. In this problem neglect the spin in all calculations. 

A) (5 points) Show that the density of state is 
		
D ε( ) =V 4π

h3a3
ε 2 .  

As always start with quantum counting
		

..( )∑ → V
h3
4πp2dp , with dispersion relation

		ε = ap→dp= dε /a ,
		

..( )∑ → V
h3
4πp2dp= V

h3a3
4πε 2dε , and

		
D ε( ) =V 4π

h3a3
ε 2  

B) (5 points) Show
		
N = dε 1

z−1 exp βε( )+1D ε( )0

∞

∫ → N
V

= b 1
β

⎛
⎝⎜

⎞
⎠⎟

m1

fm2 z( ) , where b, m1 and 

m2 are constants that you are expected to determine.  



		
N =V 4π

h3a3
dε ε 2

z−1 exp βε( )+10

∞

∫ . Write	x = βε ,

		
N = 4πV kBT

ha
⎛

⎝⎜
⎞

⎠⎟

3
2!

Γ 3( ) dε x3−1

z−1 exp x( )+10

∞

∫ =8πV kBT
ha

⎛

⎝⎜
⎞

⎠⎟

3

f3 z( ) . Hence		m1 =m2 =3 , and

		
b= 8πV

h3a3
. 

 C) (5 points) The heat capacity of the 3D Ultra-relativistic Fermion gas are

		

CV
NkB

=12
f4 z( )
f3 z( ) −9

f3 z( )
f2 z( ) ,

		

CP
NkB

= −12
f4 z( )
f3 z( ) +16

f2 z( ) f4 z( )( )2
f3 z( )( )3

(original version was 

wrong).Using the properties of the Fermi-Dirac Function given in the appendix show that 
the heat capacities obey the third law of thermodynamics. HINT: Use low-
temperature expansion in the appendix, and since z is large, keep only the first term in 
the expansion. 

From appendix,
		
fv z( ) = ξ v

Γ v +1( ) 1+ v v −1( )π
2

6
1
ξ2

+ ...⎡

⎣
⎢

⎤

⎦
⎥ . At very low T, keep only the 

first term,
		
f2 =

ξ2

2 ; f3 =
ξ3

3! ; f4 =
ξ 4

4! ,ξ = βµ . 

		

CV
NkB

=12
f4 z( )
f3 z( ) −9

f3 z( )
f2 z( ) =12

ξ 4 /24( )
ξ3 /6( ) −9

ξ3 /6( )
ξ2 /2( ) =0 , as required by third law of 

thermodynamics. 
NOTE TO MARKER: Due to error do not grade the part below on	CP . 

For

		

CP
NkB

= −12
f4 z( )
f3 z( ) +16

f2 z( ) f4 z( )( )2
f3 z( )( )3

= −12
ξ 4 /24( )
ξ3 /6( ) +16

ξ2 /2( ) ξ 4 /24( )2
ξ3 /6( )3

=0   

 
Appendix from “Statistical Mechanics”, 3rd edition, Pathria and Beale 
Grand-canonical Ensemble 
Grand partition function,

		
Ξ= zNi exp −βEi( )

i
∑ ,		z = exp βµ( ) . 

Probability of state i with energy Ei and particle number Ni, 
		
Pi =

zNi exp −βEi( )
Ξ

. 

Average Energy
		
E = − ∂lnΞ

∂β
⎛
⎝⎜

⎞
⎠⎟

and average particle number
		
Ni =N = z ∂lnΞ

∂z
. 

Grand Potential		Ω g = −kBT lnΞ= −PV  

Free Energy Helmoltz
	
F = E −TS ; Gibbs	G = F +PV =Nµ ;

	
Ω g = F −Nµ . 



Shannon’s Theorem 
		
S = −kB pi lnpi

i
∑ . 

 
Fermi-Dirac (FD) Degenerate gas 

Average number of particle in state of energy ε,
		
n

FD
= 1
z−1 exp βε( )+1 ,		z = exp βµ( ) . 

		
N = 1

z−1 exp βε( )+1 = dε 1
z−1 exp βε( )+1D ε( )0

∞

∫
ε
∑ ,

		
PV
kBT

= lnΞ= ln 1+ zexp −βε( )( )
ε
∑ . 

		
PV
kBT

= dεD ε( )0

∞

∫ ln 1+ zexp −βε( )( ) . 

Fermi-Dirac Functions 
		
fv z( ) = 1

Γ v( )
xv−1dx

z−1 exp x( )+10

∞

∫   

		Γ v( ) = v −1( )!= exp −x( )xv−1dx0

∞

∫ ,		Γ m+1( ) =m!, 	m=0,1,2....,0!=1 ;

		 
Γ m+ 12
⎛
⎝⎜

⎞
⎠⎟
=
1i3i5....i 2m−1( )

2m π ,m=1,2,3... ,	Γ 1/2( ) = π . 

Useful for classical limit, low z,
		
fv z( ) = z − z

2

2v +
z3

3v −
z4

4v + .... . 

Low temperature limit,		z = exp βµ( ) ,		ξ = βµ = lnz : 

		
fv z( ) = ξ v

Γ v +1( ) 1+ v v −1( )π
2

6
1
ξ2

+ v v −1( ) v −2( ) v −3( )7π
4

360
1
ξ 4

+ ...⎡

⎣
⎢

⎤

⎦
⎥ . 

Using		ξ
v = lnz( )ν , some values are, 

v = 5/2,

		
f5/2 z( ) = 8

15π 1/2 lnz( )5/2 1+ 5π
2

8
1
lnz( )2

+ ....
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

, 

v = 3/2,

		
f3/2 z( ) = 4

3π 1/2 lnz( )3/2 1+ π
2

8
1
lnz( )2

+ ....
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

, 

v = 1/2,

		
f1/2 z( ) = 2

π 1/2 lnz( )5/2 1− π 2

24
1
lnz( )2

+ ....
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

, 

 
 
 
 
 
 



  
 
 
 
 
 
 
 
  


