
PHYS4171-Statistical Mechanics and Thermal Physics 
Fall 2017,Assignment #4 

Problem 1) Four-state model (Canonical Ensemble): Consider a particle that can 
occupy four quantum states with energy, −ε,0,0, and ε. 

a) (5 points) Show that the 1-particle partition function is 		Z1 = 2cosh βε /2( )( )2 , the 

average (mean) energy is		 E = −ε tanh βε /2( ) ,and
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But 
		
coshx = expx +exp− x2 , and hence		Z1 = 2cosh βε /2( )( )2 . 
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It is well known that		tanhx varies from 	−1at	x = −∞ , to 0 at x = 0, to  	+1at	x =∞ . 
Hence,		 E = −ε tanh βε /2( ) , will vary fromε  atβ = −∞ to 0 at	β =0 to from−ε  atβ =∞ . 
b) (Graduate Student only, 5 points) Show that the one-particle entropy is
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by one (doesn’t look like 1)
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Full grade will be awarded only if all algebraic steps are shown. 
c) (5 points) Using the result of b), find the energy range 	

E , when the temperature is 
positive and when it is negative. By direct differentiation, show that the temperature is 
infinite, when 		 E =0 , and that the temperature is zero when 		 E = −ε ,ε . 

From equation 4.21 and 4.22,
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When 		 E = −ε ,S→∞ , so write	
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Problem 2) Graduate Student Only (10 points): In the micro-canonical (constant 
energy) ensemble the entropy is 		S = kB lnΩ , whereΩ  is the total number of microstates 

(multiplicities). Shannon’s theorem states that the entropy is 
		
S = −kB pi lnpi

i
∑ , where pi 

is the probability of the ith state, and the summation is over all states. 
a) From textbooks or online, explain the Ergodic hypothesis. Explain in no more than 

three sentences the meaning of the Ergodic hypothesis. Use this hypothesis to 
determine the probability pi of any microstate in the micro-canonical ensemble. 

Ergodic hypothesis states that, in a micro-canonical ensemble, after a sufficiently long 
period, all microstates will be visited. In fact, all microstates are equally probable. 
 
b) Use the result of a) to show that 		S = kB lnΩ is consistent with Shannon’s theorem. 
If all microstates are equally probable, then the occupation probability of a state (say 
the ith state) is 		pi =1/Ω , where Ω is the total number of microstates. Note this relation 
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Problem 3) Problem 1 Chapter 7 (10 points) 
Problem 1 
a) As discussed in class, the pressure, P(z), pushing upward on the infinitesimal cross-
section volume A!z, must cancels the downward pressure P(z+!z) and Pg. 

 

		P z( ) = P z +ΔZ( )+Pg → P z( ) = P z +Δz( )+nmgΔz.  
b) Rearranging 

	
P z +Δz( )−P z( ) = −nmgΔz→ P z +Δz( )−P z( )

Δz
= −nmg  

Taking the limit ,0→Δz
	 Δz→∞
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= dP
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Using the ideal gas equation 
		
PV =NkT→ P = nkT , 	where	n= N

V
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		P = P z( ) 	and	n= n z( ) are functions of z. Using 
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Integrating mg we obtain 
		
ln P
P0

= −mgz
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→ P = P0e
−mgz/kT .  

 

P(z) 

P(z+!z) 

Mass of  gas in infinitesimal 
cross section: n(z)!zAm 
 

!z 

F = (n(z)!zAm)g 
Pg = F/A = nmg!z 



c) Using 	P = nkT and		P0 = n0kT ,where 0n is the concentration at the surface, we obtain 

		n= n0e
−mgz/kT . If at a height z the number density drops to half the value at the surface 

2
0nn = →

		
1
2 = e

−mgz/kT .Taking the natural logarithm of both sides 
		
ln12 = −

mgz
kBT

 which 

gives 
		
z = kT

mg
ln2. The atomic mass of nitrogen is 14 amu ( kg271066.1amu 1 −×= ), and 

hence the mass of one nitrogen molecule (N2) is 

		m=2×14× 1.66×10−27kg( ) = 4.65×10−26kg, 	T =300K →

		
z =

1.381×10−23 J /K( ) 300K( )
4.65×10−26kg( ) 9.8m/ s2( ) ln2=6300m=6.3km.  

 
Problem 4) Read section 7.4, then do Problem 4 Chapter 7 (10 points) 
A) Langmuir Model Summary: In the problem a surface of total area, A, can “adsorb” 
N identical pebbles. Each pebble occupies area Ap, and there are a total of Ns = A/Ap. 
When a pebble is adsorbed onto a site there is an energy change of ε. But there is a 
counting component to this. This is a coin toss problem, where there are Ns coin tosses, 
where N will be heads, and Ns −  N tails. The “first” can be in Ns sites, the “second” in Ns 
− 1, and so on. The number of distinct arrangements of N distinguishable pebbles 

 
		
Ns × Ns −1( )× .... Ns − N −1( )( ) = Ns !

Ns −N( )!   

If the pebbles were indistinguishable we would use the binomial coefficient: 

 
		

Ns

N! Ns −N( )!  [1] 

This would take care of overcounting. 
In the canonical ensemble, the partition function is		Z = exp −βE( )∑ , but here the energy 
is simply	E = −Nε , and the number of distinct state is given above by equation [1], so the 

partition function is
		
Z N( ) = Ns !

N! Ns −N( )!exp βNε( ) , or for adsorbed atoms we have

		
Zadsorbed Nad( ) = Ns !

Nad ! Ns −Nad( )!exp βNadε0( ) , with	N→Nad and	ε →ε0 . 

B) Using Stirling’s approximation, 

		lnZadsorbed Nad( ) =Ns lnNs −Nad lnNad − Ns −Nad( )ln Ns −Nad( )+βNadε0 , 

and equation 7.19, 
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From 7.20, the chemical potent of ideal gas is
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Problem 5) Problem 3 Chapter 8 (10 points) 

A) In classical limit (8.18) gives

		 
nα = 1

exp εα − µ( )/kBT( )≪1 , and equation (8.22) 

gives
		
nα =N

exp −εα /kBT( )
Z1
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V
λ3 , and
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. Since		exp −εα /kBT( ) is 

variable
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B) Using 7.20,
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V
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, and from (A),
		 
Nλ3

V
≪1→ V

Nλ3 ≫1 . Hence it is clear 

that	µ <0 . In fact the magnitude of µ , which is proportional to T can be quite large. 
 


