
PHYS4171-Statistical Mechanics and Thermal Physics 
Fall 2017 

Assignment #2 
Assigned on Friday January 19, 2007. Due on Friday February 2, 2007. 
Read Chapter 2 of textbook, and the Math Appendix 1 sent to you earlier. 
Graduate Student must do all questions. Undergraduate students do not 
have to do Exercise 3A and 3B, and exercise 4. 
DUE on Monday October 2, 2017 
 
Exercise 1) Consider again the coin-tossing problem discussed in class. The coins can 
land as Heads (H) or Tails (T). For the case where there are N coins, the total number of 
microstates (i.e. the # of different arrangements of heads and tails) is 		2N . This is 
consistent with the result in class where the total number of microstates for 3 coins is 
	23 =8 . It was shown that the number of microstates, also called the multiplicity, of a 
macrostate with n heads (in a coin tossing experiment of N coins) is: 

		
ΩN n( ) = N!

n! N −n( )! . 
Now consider a coin tossing experiment of 4 coins. 

a) Just as in class, make a table to count all the possible microstates of the 
experiment. Count the total number of microstates. Is it consistent with the formula 
		2N ? 

Microstate # Coin 1 Coin 2 Coin 3 Coin 4 # of heads 
1 H H H H 4 
2 H H H T 3 
3 H H T H 3 
4 H T H H 3 
5 T H H H 3 
6 H H T T 2 
7 H T H T 2 
8 H T T H 2 
9 T H H T 2 
10 T H T H 2 
11 T T H H 2 
12 H T T T 1 
13 T H T T 1 
14 T T H T 1 
15 T T T H 1 
16 T T T T 0 
In all there are 16 microstates, consistent with the formula 1624 = . 

b) In such an experiment where 4 coins are tossed what is the most probable number 
of heads? Briefly justify your response. 



Of course, the answer is 2 H and 2T. Anytime you toss a coin it is equally probable 
that it is either head or tail. 

c) Using the given formulas, calculate the probabilities that a toss of all four coins 
gives: i) 4H, 0T; ii) 3H, 1T; iii) 2H, 2T; iv) 1H 3T; v) 0H, 4T. 

i) 4H, 0T, n = 4, ( ) 1
!0!4
!4

4 ==Ω n , note 1!0 = . 

 ii) 3H, 1T, n = 3, ( ) 4
!1!3
!434 ==Ω  

 iii) 2H, 2T, n = 2, ( ) 6
!2!2
!424 ==Ω  

 iv) 1H 3T, n = 1, ( ) 4
!3!1
!414 ==Ω  

v) 0H, 4T, n = 0, ( ) 1
!4!0
!404 ==Ω  

Note that the result is consistent with the table of part (a) 
d) Using the result of c) what is the most probable outcome of a coin toss experiment? 

Is this consistent with your answer in b) ? 
The n = 2 macrostate (2H and 2T) includes 6 microstates ( ( ) 624 =Ω ), the most of any 
macrostates. All microstates having equal probabilities of occurring means that the 
macrostate with 2H and 2T  (n = 2) is the most likely. This occur with the probability 

( ) 8/316/616/24 ==Ω , where we’ve used the fact that there are 16 microstates in total 
(part a). For comparisons, the other probabilities are ( ) 16/116/44 =Ω for n =2, 

( ) 4/116/416/34 ==Ω for n = 3,  ( ) 4/116/416/14 ==Ω for n = 1, and 
( ) 16/116/04 =Ω for n = 0. Hence the macrostate with n = 2 has the largest probability 

of occurring. This is consistent with the result of part a. 
 
Exercise 2) Warped Coin and Dice toss 
a) Consider a warped coin that has probability of 0.6 that it will land Head (H), every 
tike it is tossed. Use the binomial theorem, done in class, to calculate the probability that 
20 tosses (n = 20) of the warped coin will results in the four H (k = 4). 

Use the binomial theorem
		
P k;n,p( ) = n

k
⎛

⎝⎜
⎞

⎠⎟
pk 1− p( )n−k with, p = 0.6, n = 20, k = 4, 

		
P 4;20,0.6( ) = 20

4
⎛

⎝⎜
⎞

⎠⎟
0.6( )4 0.4( )14 = 20!

4!16! 0.6( )4 0.4( )16 =2.7×10−4   

b) Use the generalized binomial theorem, done in class, to calculate the probability that 
100 rolls (n = 100) of a six-sided die will land with three (3) side up 20 times (k = 20). 
This is really like the last question, but with p = 1/6. The probability is 

		
P 20;100,16
⎛
⎝⎜

⎞
⎠⎟
= 100

20
⎛

⎝⎜
⎞

⎠⎟
1
6

⎛
⎝⎜

⎞
⎠⎟

20 5
6

⎛
⎝⎜

⎞
⎠⎟

80

= 100!
20!80!

1
6

⎛
⎝⎜

⎞
⎠⎟

20 5
6

⎛
⎝⎜

⎞
⎠⎟

80

 

Probability is 
	
1.3×1039
2.43×1018 ×2.73×10

−16 ×4.6×10−7 =0.067 . 



 
Exercise 3) Sackur-Tetrode Relation 
A) Graduate Student Only. In class to prove the relation for the d-dimension 

hypersphere, 	Ad , we use the relation,

		

dθ sinnθ = π
0

π

∫
Γ n
2 +

1
2

⎛
⎝⎜

⎞
⎠⎟

Γ n
2 +1

⎛
⎝⎜

⎞
⎠⎟

. Prove this relation. 

In Class we showed		Γ µ( )Γ v( ) =2Γ µ + v( ) cos2µ−1θ sin2v−1θdθ
0

π/2
∫ . Students do not need 

to show this for this exercise.  

Let
	
µ = 12→2µ −1=0 and

		
ν = n2 +

1
2→2ν −1= n , which gives 

		Γ µ( )Γ v( ) =2Γ µ + v( ) cos2µ−1θ sin2v−1θdθ
0

π/2
∫ →  

		
Γ 1
2

⎛
⎝⎜

⎞
⎠⎟
Γ n
2 +

1
2

⎛
⎝⎜

⎞
⎠⎟
=2Γ n

2 +1
⎛
⎝⎜

⎞
⎠⎟

cos0θ sinnθdθ
0

π/2
∫ =2Γ n

2 +1
⎛
⎝⎜

⎞
⎠⎟

sinnθdθ
0

π/2
∫ . 

Since 	sinθ  is symmetric (even) about	θ =π /2 , over the interval	0<θ <π , we can see 

that 
		

sinnθdθ
0

π/2
∫ = 12 sinnθdθ

0

π

∫ . This gives 

		
Γ 1
2

⎛
⎝⎜

⎞
⎠⎟
Γ n
2 +

1
2

⎛
⎝⎜

⎞
⎠⎟
= Γ n

2 +1
⎛
⎝⎜

⎞
⎠⎟

sinnθdθ
0

π

∫ . 

Now what about
	
Γ 1
2

⎛
⎝⎜

⎞
⎠⎟

? Use the definition

		
Γ v( ) = exp −x( )xv−1dx0

∞

∫ →Γ 1
2

⎛
⎝⎜

⎞
⎠⎟
= exp −x( )x1/2dx0

∞

∫ , and make the substitution

		x = y
2 ,dx =2ydy ,

		
Γ 1
2

⎛
⎝⎜

⎞
⎠⎟
=2 exp − y2( )dy0

∞

∫ . I am sure in one of your classes it is shown 

that 		 dxexp −x2( )0

∞

∫ = π /2 , hence 
	
Γ 1
2

⎛
⎝⎜

⎞
⎠⎟
= π , which gives finally 

		

Γ 1
2

⎛
⎝⎜

⎞
⎠⎟
Γ n
2 +

1
2

⎛
⎝⎜

⎞
⎠⎟
= Γ n

2 +1
⎛
⎝⎜

⎞
⎠⎟

sinnθdθ
0

π

∫ → sinnθdθ
0

π

∫ = π
Γ n
2 +

1
2

⎛
⎝⎜

⎞
⎠⎟

Γ n
2 +1

⎛
⎝⎜

⎞
⎠⎟

. QED 

 



B) Graduate Student Only. In the appendix, we showed 
	 
ΩN !

∂ΣN

∂p
⎛

⎝⎜
⎞

⎠⎟
Δp , with

		
∑N =

V N

N!h3N
π 3N/2

3N /2( )! 2mE( )3N/2 . Show that 
		 
ΩN !3N∑N

Δp

2mE
, where 		p= 2mE . 

	

∂ΣN

∂p
⎛

⎝⎜
⎞

⎠⎟
=

∂ΣN

∂E
⎛

⎝⎜
⎞

⎠⎟
dE
dp

, with
		
E = p2

2m→ dE
dp

= p
m

, and  

		

∂∑N

∂E
⎛

⎝⎜
⎞

⎠⎟
= V N

N!h3N
π 3N/2

3N /2( )! 2m( )3N/2 dE
3N/2

dE
= V N

N!h3N
π 3N/2

3N /2( )! 2m( )3N/2 3N2 E
3N
2 	−1

. 

Rearranging
		

∂∑N

∂E
⎛

⎝⎜
⎞

⎠⎟
= V N

N!h3N
π 3N/2

3N /2( )! 2mE( )3N/2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
3N
2
1
E
=∑N

3N
2
1
E

, 

Combining
		 
ΩN !

∂ΣN

∂p
⎛

⎝⎜
⎞

⎠⎟
Δp =

∂ΣN

∂E
⎛

⎝⎜
⎞

⎠⎟
dE
dp

Δp =∑N 3N
p

2mE Δp . Using 		p= 2mE gives 

		
ΩN =3N∑N

Δp

2mE
. 

C) All students. Use the Stirling’s approximation that for very large N,		lnN!=N lnN −N , 
and also that N is so large that 		 N≫ lnN , and that 		 Δp≪ 2mE is relatively small, to 

obtain the Sackur-Tetrode Equation

		
S = kB lnΩN =NkB ln V

N
4πmE
3Nh2

⎛
⎝⎜

⎞
⎠⎟

3/2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ 52

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

. 

From part B, 
		
S = kB lnΩN = kB ln 3N∑N

Δp

2mE
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, with
		
∑N =

V N

N!h3N
π 3N/2

3N /2( )! 2mE( )3N/2 . 

		
S = kB N ln V 2πmE

h2
⎛
⎝⎜

⎞
⎠⎟

3/2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
− lnN!− ln 3N

2
⎛
⎝⎜

⎞
⎠⎟
!− ln 2mE + lnΔp + ln3N

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

, 

Using Stirling’s approximation
		
− lnN!− ln 3N

2
⎛
⎝⎜

⎞
⎠⎟
!= −3N2 ln3N2 + 3N2 −N lnN +N , or

		
− lnN!− ln 3N

2
⎛
⎝⎜

⎞
⎠⎟
!=N − lnN − ln 3N

2
⎛
⎝⎜

⎞
⎠⎟

3/2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ 5N2 , which gives 

		
S = kB N ln V

N
2πmE
Nh2

⎛
⎝⎜

⎞
⎠⎟

3/2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ 52N − ln 2mE + lnΔp + ln3N

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

. The first to terms are of 

order N, which is very large, while 		 ln 2mE ∼ ln N ≪N ,		 ln 2mE ≪ lnΔp , and 

		 ln3N≪N  so the last three terms are negligible, which gives the final result. 



D) All Students. Compare this with equation 2.16 in the textbook. Are the two entropy 
relations consistent? HINT: Use the equi-partition theorem. 

Using the equi-partition theorem for monatomic ideal gas
		
E = 32NkBT , which gives 

		
S = kB lnΩN =NkB ln V

N
2πmT
h2

⎛
⎝⎜

⎞
⎠⎟

3/2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ 52

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=NkB lnVT3/2 + f N( )+ 52

⎡

⎣
⎢

⎤

⎦
⎥ , where

		
f N( ) =NkB ln 1

N
2πm
h2

⎛
⎝⎜

⎞
⎠⎟

3/2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, or 		 S ∼ kB ln V
NT3N/2( )+NkB f N( )+5NkB /2, which is the 

same as 2.16 in the textbook. 
E) All Students. Use the relation of part C to calculate the entropy (in J/K) of one mole 
of helium at one atmospheric pressure, and room temperature (300K). 
For helium use ideal gas equation

		
PV =NkBT→V = 6.023×10

23 ×1.381×10−23 J /K ×300K
1.0132×105Pa =0.025m3   

Mass of helium, 		m= 4×1.67×10−27kg=6.7×10−27kg ,		 h=6.626×10
−34 J i s , one mole is 

		N =6.023×1023 , and 		kB =1.381×10
−23 J /K , which gives 

		NkB = 6.023×1023( ) 1.381×10−23 J /K( ) =8.32J /K . 

		 

S = 8.32 J
K

⎛
⎝⎜

⎞
⎠⎟
ln 0.025m3

6.023×1023
4π 6.7×10−27kg( )4000 J

3×6.023×1023 6.626×10−34 J i s( )2
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

3/2⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ 52

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, which 

gives 		S =127 J /K . 
 
Exercise 4) Sackur-Tetrode Relation for 2D ideal gas 
Graduate Student Only. Consider N non-interacting particles in two dimensions (2D). 
Use the same method as for Exercise 3 to find the entropy. Do the problem for the case 
where the particles are identical and indistinguishable (need factor 1/N!), then for the 
case where they are distinguishable (no need for factor). 

Use the exercise 3 trick,
	 
ΩN !

∂ΣN

∂p
⎛

⎝⎜
⎞

⎠⎟
Δp , and math appendix 

		
ΣN =

1
N!

Position	Volume( ) Momentum	Volume( )
h2N

= 1
N!

d2Nr d2Np∫∫
h2N

, valid for 2D. It is 

easy to see		 d
2N !r∫ = AN , where		A= L2  is the surface area. The momentum integration is 



all “volume” in the hypersphere, 
		
p1
2 + p2

2 + ......+ pN2 ≤ 2mE( )2 in 2D, which using the math 

appendix

		
d3Np

p1
2+p2

2+..pN2 < 2mE( )2
∫ = π 2N/2

2N /2( )! 2mE( )2N/2 ,
		
∑N =

ANπ N

N!h2NN! 2mE( )N . Using the same 

approach as in exercise 3,
		
ΩN =2N

ANπ N

N!h2NN! 2mE( )N Δp

2mE
. 

		
S = kB N ln V 2πmE

h2
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
−2lnN!− ln 2mE + lnΔp + ln2N

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. Using Stirling’s 

approximation, and		 ln 2mE ∼ ln N ≪N ,		 ln 2mE ≪ lnΔp , and		 ln2N≪N , 

		
S =NkB ln V

N
2πmE
Nh2

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
+2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. 

Do problems 5, 6, and 8 in Chapter 2. 
Problem 5) chapter 2 

a) Helium is a monatomic gas, for which the multiplicity is 		Ω = 	constant	V NT3N/2 . 
For this constant volume (V) process, using		Ti = 400K , 		TF = 403K , and 		N =1024 . 
The multiplicity change by a factor of 

		

ΩF

Ωi

=
constant	VNTF

3N/2

constant	V NTi
3N/2 =

TF
Ti

⎛

⎝⎜
⎞

⎠⎟

3N/2

= 403K
401K

⎛
⎝⎜

⎞
⎠⎟

1.5×1024

= a	very	large	number . 

b) The entropy of helium is 		 S = 	k	ℓn constant	V
NT3N/2( ) . In a very slow (quasistatic) 

compression process in which the entropy does not change, the quantity 
		V NT3N/2 = 	constant . Hence the entropy loss due to the decrease in the volume 
(V) is offset by the entropy gain due to the increase in temperature (T).  

 
It should be noted that such a constant entropy process is also called an adiabatic 
process which is described by the equation 		TV γ −1 = 	constant , where for helium 

		
γ −1= 2

f
= 23→ constant 3/2 =TV →		VT3/2 = 	constant , where it is noted that the 

constants in the equations are not all the same, but nevertheless they are all still 
constants. Taking the last of these equations to the power of N, we obtain 
		V NT3N/2 = 	constant , which is the same equation obtained requiring that the entropy 
remains constant.  
 

Problem 6) chapter 2 

a) Start with the thermodynamics definition of entropy: 
	
ΔS ≥ Q

T
. In the sublimation 

process of this problem heat flow of 		Q = 10−3 g( ) 3000 J / g( ) =3J transforms ice to 



water vapour at constant temperature of 		 T =260!K . The change in entropy is 

		 
ΔS = 3J

260!K =0.0115 J /K . But we also have the Statistical Physics formula 

		S = k lnΩ , where Ω is the multiplicity. The change in entropy is 

		
ΔS = SF − Si = k ln

ΩF

Ωi

, where	Ωi and	ΩF are the initial (ice) and final (vapour) 

multiplicity, respectively. Combining the two equations: 

		
0.0115 J /K = ΔS = k lnΩF

Ωi

→
ΩF

Ωi

= 0.0115 J /K
1.381×10−23 J /K =8.33×1020 =1021 . Hence 

the multiplicity changes by a factor of 	1021 . 
Gas molecules have translational freedom, which manifested itself in the dependence of 
volume (V) in the entropy formula		 S = 	k	ℓn constant	V

NT3N/2( ) . The solid phase of 

matter does not possess this translational freedom, and consequently have lower 
significantly lower entropy. 
Problem 8) chapter 2 

a) The entropy of a monatomic gas is		 S = 	k	ℓn constant	V
NT3N/2( ) . Initially the gas 

is at temperature T, Volume 		V0  and entropy		 Si = 	k	ℓn constant	V0
NT3N/2( ) . In the 

final state the gas change in still at temperature T, and its volume is reduced 2% 

to 		0.98V0 , and its entropy is
		 
SF = 	k	ℓn constant	 0.98V0( )N T3N/2⎛

⎝
⎞
⎠ . The change in 

entropy is 

		
ΔS = SF − Si = k	ln constant	 0.98V0( )N T3N/2⎛

⎝
⎞
⎠ − 	k	ln constant	 0.98V0( )N T3N/2⎛

⎝
⎞
⎠   

		
ΔS = k	ln 	

0.98V0( )N
V0
N

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=Nkln0.98= 3×1022( ) 1.381×10−23 J /K( )ln 0.98( ) = −0.0084 J /K

 
b) Using the first law of thermodynamics 	Q = ΔE +W and the fact that		ΔE =0 , we 

obtain	W =Q . In an isothermal process the formula 
	
ΔS = Q

T
→Q =TΔS  is valid. 

Combining the work done on the gas is	W =Q =TΔS . Using 		T =300K and 

		ΔS = −0.0084 J /K , 		W =TΔS = 300K( ) −0.0084 J /K( ) = −2.51 J . So – 2.51 J of 
work is done by the gas, and 2.51 J of work is done on the gas by us. 

c) From part b) the amount of heat flow into the gas is		Q =W = −2.51 J . Basically 
2.51 J of heat flow out of the gas. The amount of heat flow into the environment 
		−Q =2.51 J . Basically 2.51 J of heat flow into the environment. 

d) The change of entropy of the environment is 
		
ΔS = −Q

T
= 2.51 J300K =0.0084 J /K . 


