
PHYS3511-Biological Physics Fall 2018, Assignment #8  
Exercise 1) Now suppose you purify a DNA sample of an organism, consisting of 
double-stranded DNA molecules each of length 2000000 basepairs (bp), and suspended 
in a salt solution. Using a light scattering microscope, with resolution of 0.2$%, each 
molecule appears to be a blob of diameter 1.2$%. 

a) Using the appropriate equation estimate the length of one basepair. Compare your 
results with the known size of ~0.34 nm per basepair. 
 
Using equation 8.4 〈)*〉 = -.*, with a being the Kuhn length, and N is the 
number of Kuhn length in the DNA/polymer. On page 319, in the example 
“Estimate: End-to-End Probability for the E. Coli genome”, it is stated that “An 
open DNA chain can be modeled as a random walk…. Since the Kuhn length 
for bare DNA is roughly 300 bp”. If we assume this then we have . = 300012, 
where 02 is the average length of one basepair (bp), and - =

345
677

, where -12is the 
number of bp of the DNA. This gives 
〈)*〉 = -.* = 300-12012 → 9〈)*〉 = 9300-12012. Since the diameter is 
1.2$%, we have 9〈)*〉 = 9300-12012 =

:.*;<

*
→ 012 =

7.=;<

√677×*777777
=

2.5 × 10AB$%, which is 012 = 0.025	D%. On the other hand if we assume that 
. = 012, then 〈)*〉 = -12012

* , and we have 	012 =
7.=;<

√*777777
= 4.24 × 10AF$% =

.424D%, which is only a bit larger than the known size of ~0.34 nm per basepair. 
b) Consider the DNA of a particular strain of E. Coli, which is a single-stranded 

DNA of length 5386 bp. Would this DNA be visible using the same light 
microscope as part a)? If your answer is no, what is the minimum resolution of a 
microscope that can resolve this DNA blob? 
 
Let’s assume for the purpose of this question that the equation 〈)*〉 = -12012

* , 
with 012 = 0.34D%. For a system of -12 = 5386,  
〈)*〉 = -12012

* → IJKL~2 ×9〈)*〉 = 29-12012 = 2√5386 × 0.34D% = 49D% 
or 0.049$%, which means that it will not be visible to a microscope of resolution 
1.2$%. 

Important point: I copied this question from another assignment, without knowing that 
there are a few errors. For example, E. Coli DNA has 5.4 × 10=NO, and ~5400 genes. 
The question erroneously states that it has about 5386 bp. 
More accurate information can be gleaned from looking at the Figure 8.6 

For example, in the graph E. Coli has about 
5.4 × 10=NO. If we use the equation, 
〈)*〉 = -.*, with a = 300 bp× :

6
D% = 100D%, and 

the number of Kuhn length, - =
345
677

=
B.F×:7P

677
, or 

- = 18000, IJKL~2 × 9〈)*〉 = 2 × √-. =
2 × √18000× 100D% = 2.7 × 10FD% = 26$%, 
which is still larger than ~10$% on the graph. But 

the plot use radius of gyration from equation 8.32 and 8.33 
 



IJKL~9〈)R
*〉 = S

TU5
6

, with the persistent length V2 =
W

*
= 50D%, and 0 = -12012, 012 =

0.34D%. For E.Coli, IJKL~9〈)R*〉 = SB.F×:7P12×(7.6FZ</12)×B7Z<

6
= 5531D%~5.5$%, 

which matches the data of Figure 8.6. Use this method for the final exam.**** 
 
Exercise 2) Consider equation 8.36 for a free-polymer distribution, and 8.37 for a 
tethered polymer. The result is shown in the plot of figure 8.12 (see below), for distance 
100 kb between the two fluorescent tags, and -/.* = 0.5$%*, )~0.9$%, usually the 
Kuhn is taken to be about a = 300 bp, with the length of a base pair being ~ :

6
D% =

0.34D%. In the equation N is the Kuhn segments between the two markers, and -/ is the 
Kuhn segments between the second tether and the marker. 

 

 
A) Reproduce the plot above 

If we assume that the original plot use -/.* = 0.5$%*, with a = 100 nm, then 
-/.* = 0.5$%* → -/ =

7.B×:7PZ<]

(:77Z<)]
= 50 Kuhn segments. If we assume as in 

figure caption of 8.12 that the DNA has 100 kb = 10BNO, then we should have 
- =

345
677

= 333 Kuhn segments. However, if you read page 326, it is clear that 
figure 8.12 uses the value -.* = 1$%*, which gives N = 100 Kuhn segments. If 
we use this number for plotting equation 8.36 and 8.37, we obtain the result 
shown below (on next page): thin solid line for free polymer with -.* = 1$%*; 
dashed line for tethered polymer with -/.* = 0.5$%*. Note that the positions of 
the maxima are the same as in figure 8.12, but the probability values P(r) are 
higher. This will be explained below. 

 
B) Double the number of segments -/, and plot the result and compare with A). 

 
If we doubled -/ → -/ = 100, then -/.* = 1.0$%*. Looking at the picture of 
the polymer we can also say that this means - → - = 150, and -.* = 1.5$%*. 
The plot is shown on the next page. 

 

 

 
 



 
****The most important point to note is that the plots of part B, shift the maxima 
to the right, and broaden the plots. 
****Important Point: You may note that the probability of some plot has value 
greater than 1, P(r) > 1. This seems illogical since probability should not be > 1. 
But please note that the probability: 

^(_) = `
3

2a-.*
b
6/*

4a_*LA
6c]

*3W], 
and 

^(_) = `
3

2a-.*
b
:/* _

)
dL

A
6(cAe)]

*3/W] + L
A
6(cge)]

*3/W] h 

has unit of inverse length (%A:). This means that the probability must be multiply 
by an arbitrary length ∆_ → ^(_)∆_. If we use ∆_ = 0.25$%, then we the 
probability will have the same values as in Figure 8.12 (on previous page). 
****ADVICE verify in the above that P(r) has unit of inverse length. 

 
 
Exercise 3)   

A) Using Stirling’s approximation derive equation 14.3, where the values of L and C 
are not negligible. Reproduce the plot of 14.7, but using one lattice volume being 
j1kl = 1D%6, with 1̂kmZnvs. [0] in M. 

From class notes: We begin by calculating the partition 
function q = ∑ s(t)LAuvv , s(t)is the multiplicity 
(number of microstates) of states with energy E. 
Definition: 
• w is the number of lattice 
• L is the number of ligands 
• C is the number of crowding molecules 

The multiplicity is a function of w, L and C 

s(w, 0, x) =
w!

0! x! (w − 0 − x)!
 

 



1̂kmZn =
1

1 +
s(w, 0, x)

s(w, 0 − 1, x) L
u{|4A|}

~�ÄÅ
 

Assume w, L and C are large Ç(É,T,Ñ)

Ç(É,TA:,Ñ)
=

(TA:)!(ÉATAÑg:)!

T!(ÉATAÑ)!
=

ÉATAÑ

T
 

1̂kmZn =
1

1 +
w − 0 − x

0 Lu∆|
 

∆Ö = Ö1
Üká − ÖT

Üká 
Defining the total volume as Ωj1kl , with j1klbeing the arbitrary box size. 

1̂kmZn =
1

1 +

1
j1kl

−
0

Ωj1kl
−

x
Ωj1kl

0
Ωj1kl

Lu∆|

 

In this case we define the concentration: reference, â7 =
:

ä4�ã
; Ligand 

concentration, âT =
T

åä4�ã
; crowders concentration âç =

Ñ

åä4�ã
, and 

1̂kmZn =
1

1 +
â7 − âT − âç

âT
Lu∆|

. 

As usual we use â7 = 0.6é, and from figure 14.7, ∆|
èêë

= −5.0, we reproduce the 
plot but in unit of M below: 

 
 

 

Note that if we calculate 1 molecule in a box 
of 1D%6in size, this would work out to a 
molar concentration of c0 = 0.6 M, see 
Solution of assignment 6, exercise 6. 



B) Consider the opposite of Figure 14.9, where a crowding molecule occupy four 
lattices, while a ligand occupies one lattice. Derive an equation similar to 14.4.  

1̂kmZn =
1

1 +
s(w, 0, x)

s(w, 0 − 1, x) L
u{|4A|}

~�ÄÅ
 

s(w, 0, x) =
w!

x! (w − x)!
×

(_w − _x)!
0! (_w − _x − 0)!

 

s(w, 0, x)

s(w, 0 − 1, x)
=
(0 − 1)! 	
0! 	

(_w − _x − 0 + 1)!
(_w − _x − 0)!

=
_w − _x − 0 + 1

0
 

For large w,x, 0 

1̂kmZn =
1

1 +
_w − _x − 0

0 Lu∆|
, ∆Ö = Ö1

Üká − ÖT
Üká 

Using the same definition of concentration as before, and with r = 4, 

1̂kmZn =
1

1 +
4â7 − âT − 4âç

âT
Lu∆|

 

 
 
 
    
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 

 
 

 
 
 

****Note: Conclusion for exercise 3 
It is clear in part A) that a crowded 
environment induce cooperativity, i.e. 
increase the probability of ligand binding. 
But do the large crowding molecules of 
part B) increase binding cooperativity? To 
answer note that çíAç}Açì

ç}
 of A) is smaller 

than FçíAç}AFçì
ç}

 of B), for the same values of 
cL and cc. This means that Pbound of part B) is 
smaller. Can you see why? Ask yourself 
whether larger crowder are more or less 
effective at inducing cooperativity in 
binding? 

 

 

 

 



Exercise 4) Chapter 14, Problem 14.1  
Chapter 14 of the textbook argued that the mean spacing between molecules in an in vitro 
biochemical experiment is roughly 100 nm at $é concentration, while in the cell the 
spacing are a factor of 10 smaller. Justify these statements with simple estimates. The 
biochemical “standard state” is often taken as 1M. Work out the mean spacing at this 
concentration. 
 
For in vitro 1$é = 1 × 10A=é, with 1 M = :<ká

T
=

:<ká×=.7*6×:7]î<káïñ

:T×:7ïî<î∙Tïñ
=

6.023 × 10*=%A6, so that 1$é = 6.023 × 10*7%A6. The mean spacing is found by 

taking the inverse cube root ò :

=.7*6×:7]í<ïîô
:/6

= 1.18 × 10Aö%, which is about 118 nm.  
 
For in vivo (living cell), with 1 M = :<ká

T
=

:<ká×=.7*6×:7]î<káïñ

:T×:7ïî<î∙Tïñ
= 6.023 × 10*=%A6. 

The mean spacing is found by taking the inverse cube root ò :

=.7*6×:7]P<ïîô
:/6

=

1.18 × 10Aõ%, which is about 11.8 nm, which is ten time lower than the in vitro value. 
 
Exercise 5) Chapter 14, Problem 14.3 
Consider equation 14.11 on the partial pressure of non-dilute solute 

O = úùû[ü](1 + † + 0.625†* + 0.287†6 + 0.110†F) 
In this case [ü] is the number concentration of hemoglobin proteins. The solid line in the 
plot below show that equation 14.11 is able to quantified the pressure vs concentration of 
hemoglobin in solution. This exercise asks students to verify this claim, by substituting 
one or more data points into the equation. 

 
Detail:   

1) mass of 1 Hemoglobin, MH = 64 000 Da  
2) with V = volume of sphere of diameter 5.8 nm = 1 × 10A*B%6 
3) For concentration 200 g/L  → † = j[ü]~0.748, ^~17000^. 

Note: 1 mm Hg ~133^. → ^~17000^. ÷ 133%%
¢Ç

£W
= 127	%%	üs, which more or 

less matches the value on the graph above. 
 
   
 

 


