PHYS3511-Biological Physics

Fall 2018, Assignment #7 Due Thursday November 22, 2018
Read Chapter 7: section 7.1 and 7.2 page 281 to 303. The information on these sections
may be used in multiple-choice questions in quiz 2 and the final exam.

Exercise 1) (10 points) Do problem 7.3 of Chapter 7

[ — Figure 7.18: Probabilities of oxygen
binding to dimoglobin. The plot
shows the probability of finding no
oxygen molecules bound to
dimoglobin (pp), that of finding one
molecule bound (p)), and that of
© finding two molecules bound (p;).
The parameters used are Ae = -5 kgT,
J=-=2.5kgT, and ¢p = 760 mmHg.
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Toy Model of a Dimeric Hemoglobin (Dimoglobin) with oxygens on lattice

dimoglobin molecule 0, molecule
Define N as the number of O> molecule and ) the

© © number of lattice sites. If an O> molecule occupies
a lattice site then it has the energy &,; and if it is
» (W) o bounded to one of the two dimoglobin sites then
its energy is €. If two oxygens are bounded then
, o there is an energy of J. We have the following
C energy and multiplicity.
¢ No bound oxygen: o; = g, = 0; N oxygens on
: lattice, energy E (0y,0,) = E(0,0) = Né&gy;;
2 = number of lattice sites

N = number of O, molecules multiplicity of microstates with the same energy
Q!

NI(Q-N)!
One bound oxygen: 0, = 1,0, = 0 and 0; = 0,0, = 1 ; N — 1 oxygens on lattice;
energy £(1,0) = E(0,1) = (N — 1)g&g,; + &; multiplicity of microstates with the same
al

energy ———————.
(N-1)!(Q-N+1)!
Two bound oxygens: g, = 1,0, = 1; N — 2 oxygens on lattice; energy E(1,1) =
E(1,1) = (N — 2)&go; + 2€ + J; multiplicity of microstates with the same energy
ol

(N=-2)I(Q=-N+2)!"

0Ol
Z exp(_ﬁNgsol)

~NI(Q - N)!
Q!

+ 2 X N—DIQ-N1 D! exp(=B((N —1eg; + €)
Ql

exp(=BI(N — 2)&51 + 26 +]D)

TN DI QN2



Now we assume that both (1 and N are very large, and that Q >> N (i.e. dilute
concentration of oxygens), we the employed the better version of Stirling’s
approximation (see equation 6.15) to show

Q! v
Q-

This gives

,QN QN—l

7 = mexp( BNeso) +2 X —r =D exp (—ﬁ((N — Degor + 5))
+ g P (BLN — D + 26+ )
Using (N) = ¥4, 5,=0,1(01 + 02)P (01, 53)
(N> N-1
(152 ) exp( ﬁ((N 1)5501 + 5)) + 2 (152 2)| exp( ﬁ[(N 2)gsol + 2¢ +]D
VA

or
(N)

N-1

(152 ) exp( ﬁ((N - 1)5501 + 5)) + 2 (152 2)| exp( ﬁ[(N 2)gsol + 2¢ +]D

%exp(_ﬁlvgsol) +2 X % exp (—ﬁ((N — 1)5501 + g))

+hexp(—ﬁ[(zv —2)egor + 26 +]1)

N
Now we divide numerator and denominator by — Ll exp(—ﬁN £501) to Obtain

zﬂexp(—ﬁ(e—esol>)+zN(NQz exp(—B(2(e — £50) +))

1+2Xx5 exp( —B(e — Sol)) +2 X N(Asll—z_ exp(—ﬁ(Z(s — Es501) +]))

Assuming that the number of O, is large, N(N — 1)~N?, we obtain
N N?
2qexp(=pAe) + 257 exp(—B(24e +)))

2 )
1+ Z%exp(—ﬁAs) + %exp(—ﬁ(ZAs +)))
with Ae = & — gg,;. Writing

(N) =

(N) =

N
N (QVbox) _c
Q (1N ¢
(7oer)
where ¢ = , since QV,,, total volume of the system, and ¢, = is the reference
box box

concentration, i.e. the concentration for one molecule (such as O») in a volume V.. As
discussed in class (and in the textbook) V},, is the volume occupied by one lattice (the
blue square in the figure on the previous page). The value is arbitrary, but the textbook

chooses Vjp,, = 1nm3. Substituting% = Ci gives
0



2 (ci) exp(—BAe) + 2 (3)2 exp(—B(24e +)))
1+ 2( )exp( pAs) + ( ) exp(—B(24e +]))'

which is identical to equation 7.32.
This completes part A of the question.

(N) =

Part B)
From the previous part A
Q!
Z= mexp(—ﬁNfsoz)
Q!
+2X exp(—B((N — Dego, + &)

(N—l)'(Q N+ 1)!
TN - 2)'(9 N+2)uexp( BIIN = 2)&501 + 26 +]D)

it is clear that the first, second and third terms are associated with the probability that no
O3, one O, and two O, respectively, are bounced to the dimoglobin. We can infer from
this:

1

oo 1+2(— )exp( pae) + (= ) exp(—B(2As +)))
2() exp(~pae)

e 1+2(— )exp( pae) + (= ) exp(—B(2Ae +)))

- (L)’ exp(—pezse +1)

1+ 2( )exp( pAs) + ( o) exp(—B(24e +])).

From the figure caption 7.18

which gives
exp(—BAe) = 148.4;exp(—f2Ae) = 2.2 X 10%; exp(—(24e +])) = 268337;
Now we note that the partial pressure of oxygen can be given by the ideal gas
approximation
Poxygen = CkBT; Preference = COkBT; i = M-
Co Preference

On the figure caption it is stated that Prcference = €o = 760mmHg. Let’s pick a
ubiquitous point on Figure 7.18 Pyyygen = ¢ = 10°mmHg = 1mmHg,

(D) - ()
co 760'\c,/ ~ \760

which gives



1 ~ 1

o= = = 0.54,
= 2( RYPO (7 o) Jegaz, L+039+.464 1854
P, = 2 (LO) 1484 _ 0.39 — 021,
1+ 2( 5)148.4 + (m) 268337 18
2
p, = (760) 268337 _ 0464 _
142 (7gp) 1484 + (720) 268337 8%

If you look at Figure 7.18 on the first page we can see that thes are the correct values.

Exercise 2) (10 points) Chapter 7, Problem 7.5
A) we generalized equation 6.120 for two ligands CO and O to give the probability of

bound O,
([02])”02
Ko,
[02])“02 ([CO])”CO'

1+ (— + (=

Ko, Kco
[0,] = 0.21atm = 159.6mmHg; Ky, = 26mmHG; [CO] =
2mmHg; Kgo = — Ko, = 0.108mmHG; n,, = 3.0, ngp = 1.4.This gives

240
159.6mmHg\>°
26mmHG 231.3

1 159.6mmHg\>° 2mmHg \"* T 1+2313+595
+< 26mmHG ) (0.108mmHG)

()

)

0, —

—1 760mmHg

0, = = 0.79

PCO_

( 2mmHg )1'4

p. = 0.108mmHG — 021
co 159.6mmHg\>° 2mmHg \** o
1+ ( )

26mmHG 0.108mmHG

B) Write

159.6mmHg\>°
26mmHG

1+ 159.6mmHg\>° + (CO partical Pressure)l'4
26mmHG 0.108mmHG

0, —

Plot is shown below
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C) equating the probability

M o2 [CO] nco
Py, = <17(102) — = Prp = <Kco)
i A VAR

After canceling the denominator

[0:1\" _ ([COT\"® _ ([02]\" (Kco )”C" _
Ko, — \ K, Ko, [col)

[CO] =K, [0,]\ "2/ 0.108mmH <159.6mmHg)3-0/1.4 T
— RDco KOZ - Y mm g 26mmHG =53mm g

Exercise 3) (10 points) Chapter 7, Problem 7.6
Preamble: partition function Z = )., gexp(—pB¢)(e)exp(—pe), where the summation is
over all microstates, and ¢ is the energy of a group of microstates with the same energy,

and g(¢) is the multiplicity or the number of microstates that has the energy €. The

probability that a microstate with energy ¢ is occupied is simply P(e) = w.

A) Compact microstate: energy zero, multiplicity g(0) = 1; open state energy ¢,
multiplicity g(e) = 3.
Z =1+ 3exp(—pe);
open (0) conformation probability is
_g(@©@exp(=pe) _ 3exp(—pe)

0 Z 1+ 3exp(—pe)
closed conformation probability is
b g(0)exp(—=p0) 1

¢ Z 1+ 3exp(—pe)



B) Large temperature T — oo and f = RB%T — 0 and exp(—Be) — 1, which gives
3exp(—pPe) 3 1 1
° =1+ 3exp(—fe) 4T 1y 3exp(—fe) 4
Very Low Temperature T — 0 and § = RB%T — o0 and exp(—p¢) - 0,
3exp(—pPe) 1
° "1+ 3exp(—Be) ¢ 1+ 3exp(—fBe)
At very low temperature the protein will occupy the compact state with probability 1.

=1

C) Average energy

_ _ Yeeg(e) _ 0x(0)exp(—PB0)+e3exp(—Pe) _ 3eexp(—Pe)
<E> - Z‘g SP(S) - Z - 1+3exp(—pe) - 1+3exp(—Be)’

Bonus) (15 points) Just like problem 7.3 we will revisit the MWC model (page 300 to
301), but we will allow N oxygens (O2) to occupy {2 lattice sites. Now derive the relation

7.36, but with x = iexp(—ﬁ((sT — &501)) and y = iexp(—ﬁ((sR — &501) ), Where &4;is
Co Co

the energy of the ligand (oxygen) in water, used in the ligand-receptor model in section
6.1.1. Below is the plot of the MWC model. Pick at least 2 points from each of the 3
curves to verify that the values shown in the caption is consistent.

2 ——
e -4kgT . Figure 7.21: Average number of
1.5 ( 5 bound receptors in dimoglobin for the
—  MWC model. The dimensionless
concentration is written as
x = (¢/cg)e~PET—H0) where e is the
binding free energy of the ligand in
the tense state. A« is the difference
between the binding energy in the
0 0.5 1 1.5 2 relaxed and tense states. For the plots
dimensionless concentration ~ shown here, ¢ = 2 kgT.

occupancy



+ 7.3 Dimoglobin revisited

(a) Use the canonical distribution (as in Section 6.1.1 on

p. 241) to redo the problem of dimoglobin binding. For
simplicity, imagine a box with N O, molecules that can be
distributed among Q sites. This simple lattice model of the
solution is intended to account for the configurational
entropy available to the O; molecules when they are in
solution. This disposition of the system is shown in

Figure 7.29. Use the energy given in Equation 7.29 when
constructing the partition function.

(b) Figure 7.18 shows the probabilities of the various states
available to dimoglobin in its interactions with its oxygen
binding partners. Write expressions for the probabilities py,
p1, and p; corresponding to occupancy 0, 1, and 2,
respectively. Using the parameters shown in the caption to
Figure 7.18, reproduce the plot.

dimoglobin molecule 0, molecule

C

C

©
©

Q = number of lattice sites
N = number of O, molecules

Figure 7.29: Schematic of the binding assay of interest in
which the oxygen molecules can be either bound to
dimoglobin or in solution.

+ 7.4 State probabilities in the MWC model

Plot pg, p1, and p,, the probabilities of different states of
occupancy for both the T and R states for the MWC model of
dimoglobin. Use the same parameters to generate your plot
that were used to generate Figure 7.21.

» 7.5 Carbon monoxide and hemoglobin

Carbon monoxide is a deadly gas that binds hemoglobin
roughly 240 times as tightly as oxygen does (this means
that CO has 1/240 the dissociation constant of O, or
240Kco = Ko, . where Ko, = 26 mmHg).

(a) When both CO and O; are present, use the Hill
equation introduced in Section 6.4.3 to calculate the
probability that hemoglobin will be saturated with oxygen.
Similarly, compute the probability that hemoglobin will be
saturated with CO. Calculate the partial pressure of oxygen
using the fact that atmospheric oxygen constitutes roughly
21% of air and assume a partial pressure of CO of 2 mmHg.
Hemoglobin binding to carbon monoxide has a Hill
coefficient of 1.4 and hemoglobin binding to oxygen has a
Hill coefficient of 3.0.

(b) Plot the probability of O, binding to hemoglobin as a
function of the partial pressure of CO assuming the oxygen
partial pressure remains constant.

(c) Show that CO and O; will have an equal probability of
binding when the condition

(2™ g™

is satisfied and work out the partial pressure of CO at which
this occurs.

* 7.6 Toy model of protein folding

A four-residue protein can take on the four different
conformations shown in Figure 7.30. Three conformations
are open and have energy ¢ (¢ > 0) and one is compact, and
has energy zero.

(a) At temperature T, what is the probability, p,, of finding
the molecule in an open conformation? What is the
probability, pc, that it is compact?

(b) What happens to the probability p¢, calculated in (a), in
the limit of very large and very low temperatures.

(c) What is the average energy of the molecule at
temperature 77

Oo—0—0-0

open open
open compact

Figure 7.30: Toy model of protein folding showing
four different conformations. (Adapted from K. Dill and
S. Bromberg, Molecular Driving Forces, 2nd ed. Garland
Science, 2011.)

7.7 Chemical potentials and channel open
probabilities

An alternative way to think of the probability of gating of
membrane-bound channels is to think of the membrane as
consisting of two species of channel, closed and open, at
concentrations ¢ osed and Copen, respectively. These two
species are subject to constant interconversion
characterized by an equilibrium in which their respective
chemical potentials are equal. By setting the chemical
potentials for these two species equal, work out an
expression for the open probability.

© 7.8 Energy landscapes in the two-state model

Draw an energy landscape such as shown in Figure 7.7 for
the voltage-gated sodium channel presented in Figure 7.2.
In particular, show how the landscape changes as a function
of the applied voltages shown in Figure 7.2(C). Explain your
reasoning carefully.



