
PHYS3511-Biological PhysicsFall 2018, Assignment #2 
Read Chapter 3 of textbook before attempting the assignment 
Exercise 1) The genome of the HIV–1 virus, like any genome, is a string of “letters” 
(base pairs) in an “alphabet” containing only four letters. The message for HIV is rather 
short, just 𝑛 = 10%  letters in all. Since any of the letters can mutate to any of the three 
other choices, there’s a total of 30000 possible distinct one-letter mutations.  
In 1995, A. Perelson and D. Ho estimated that every day about 1010 new virus particles 
are formed in an asymptomatic HIV patient. They further estimated that about 1% of 
these virus particles proceed to infect new white blood cells. It was already known that 
the error rate in duplicating the HIV genome was about one error for every 3 × 10%  
“letters” copied. Thus, the number of newly infected white cells receiving a copy of the 
viral genome with one mutation is roughly  

10() × 0.01 × (10%/3 × 10%) ≈ 3 × 10/ 
per day. This number is much larger than the total 30000 possible 1-letter mutations, so 
every possible mutation will be generated several times per day. 
A) How many distinct two-base mutations are there? Hint: see class notes. 
In class we defined the number of base(bp)/nucleotide(nt) as 𝑛 = 10%, and the number of 
mutations as i, and the total number of i-base mutations as: 

𝑁123245 =
31𝑛(𝑛 − 1)… (𝑛 − 𝑖 + 1)

𝑖! =
31𝑛!

𝑖! (𝑛 − 𝑖)! = 31 ;𝑛𝑖 < 

Hence the total number of 2-base mutation is: 

𝑁=23245 =
3110000(10000− 1)

2! = 4 × 10@ 
B) You can work out the probability P2 that a given viral particle has two bases copied 
inaccurately from the previous generation using the sum and product rules of probability. 
Let 𝑝 = (

B×()C
 be the probability that any given base is copied incorrectly. Then the 

probability of exactly two errors is P2, times the probability that the remaining 9998 
letters don’t get copied inaccurately, times the number of distinct ways to choose which 
two letters get copied inaccurately. Find P2.  
The probability of a i-base mutation each time an HIV is replicated is: 

𝑃1 = ;𝑛𝑖 <𝑝
1(1 − 𝑝)EF1, 

where 𝑝 = (
B×()C

 is the probability of a RNA copy error each time an HIV is replicated. 
For a 2-base mutation: 

𝑃= = ;100002 <𝑝=(1 − 𝑝)())))F= = 0.04, 
C) Find the expected number of two-letter mutant viruses infecting new white cells per 
day and compare to your answer to (A). Hence estimate how long it would take HIV to 
mutate to a form that is resistant to two anti-virial drugs that deactivate two amino 
acids sites of HIV. Hint: see class notes. 
Following the logic used for 1-base mutation the number of i-base mutation per day is: 

𝑁1 = 10() × 0.01 × 𝑃1. 
So the number of 2-base mutations per day is  

𝑁= = 10() × 0.01 × 𝑃= = 4 × 10H𝑑𝑎𝑦F(. 
The time it would take for HIV to mutate to a 2-base drug resistant form is simply: 



𝑡𝑖𝑚𝑒 =
𝑁=23245

𝑁=
~112𝑑𝑎𝑦𝑠. 

D) Repeat (A–C) for three independent mutations. 
the total number of  3-base mutation is: 

𝑁B23245 =
3110000(10000 − 1)(10000− 2)

3! = 4.5 × 10(= 
For a 3-base mutation: 
𝑃B = ;100003 <𝑝B(1 − 𝑝)())))FB = 0.0044, and	
𝑁B = 10() × 0.01 × 𝑃B = 4.4 × 10S𝑑𝑎𝑦F(. 
The time it would take for HIV to mutate to a 2-base drug resistant form is simply: 

𝑡𝑖𝑚𝑒 =
𝑁B23245

𝑁B
~1 × 10/𝑑𝑎𝑦𝑠 

E) Suppose an antiviral drug attacks some part of HIV, but that the virus can evade the 
drug’s effects by making one particular, single-base mutation. According to the 
information above, the virus will very quickly stumble upon the right mutation—the drug 
isn’t effective for very long. Why do you suppose current HIV therapy involves a 
combination of three different antiviral drugs simultaneously administered? 
For a combination of two antivirial drugs that deactivate two sites, the result of part c 
shows that after about 112 days (half a year) HIV would have mutate to a form resistant 
to the drugs. In contrast the result of part D shows that it would take centuries for HIV to 
mutate to a from resistant to three drugs simultaneously. 
Exercise 2) Problem 3.1 of Chapter 3 
3.1 Growth and the logistic equation 
In this chapter we described the logistic equation as a simple toy model for constrained 
growth of populations. The goal is to work out the dynamics in more detail. 

A) Rewrite the equation in dimensionless form and explain what units this means 
time is measured in. 
Equation 3.8 is TU

T2
= 𝑟𝑁 ;1 − U

W
<, where r is the rate in unit of 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ∙ 𝑠F( =

𝑠F(, and of course, 𝑁(𝑡) is the population or  the number of particles (i.e. 
proteins, mRNA, etc.), and K is the “maximum population”.  We can define the 
“growth time” 𝜏 = 1/𝑟 in unit of s. Let’s rewrite the equation by dividing both 
sides by rK: 

𝑑(𝑁/𝐾)
𝑑(𝑟𝑡) =

𝑁
𝐾 ]1 −

𝑁
𝐾^ →

𝑑𝑁∗

𝑑𝑡∗ = 𝑁∗(1 − 𝑁∗), 

where 𝑁∗ = 𝑁/𝐾is the scaled population, so that N* is the population measured 
in unit of the maximum population, K. and 𝑡∗ = 𝑟𝑡 = 𝑡/𝜏 is the dimensionless 
time. t* is time in measured in units of the “growth time” 𝜏 = 1/𝑟. 

B) Find the number of N at which the net growth rate is maximum. 
I believe that there is a misprint in the question, and the authors really meant net 
growth rate (see figure 3.10).  

The net growth rate is TU
∗

T2∗
. To maximize we use basic calculus, and differentiate the 

net growth rate with respect to N*, and set it to zero. To do so write the net growth rate as 
a function of the scaled population,  TU

∗

T2∗
= 𝑓(𝑁∗) = 𝑁∗(1 − 𝑁∗). Find the maximum by 



setting differentiation with respect toTb(U
∗)

TU∗
= 0 → 1 − 2𝑁∗ = 0 → 𝑁c4d∗ =0.5. To prove 

that it is a maximum you must find the second derivative and evaluate it at 
𝑁∗ = 𝑁c4d∗ =0.5, we find the second derivative  T

eb(U∗)
TU∗e

= −2 < 0. Hence using the rules 
of calculus it is a maximum. 

C) To find the maximum value just evaluate the net growth rate at 0.5. 
 TU

∗

T2∗
(𝑁c4d∗ ) = TU∗

T2∗
(0.5) = 0.5(1 − 0.5) = 0.25.  

D) To do this one show that  TU
∗

T2∗
= 𝑁∗(1 − 𝑁∗) can be rewritten as that  TU

∗

T2∗
=

−𝑎(𝑁∗ − 𝑁c4d∗ )= + 𝑏 , where you must find a, and b. This is just an inverted 
parabola. 

TU∗

T2∗
= −(𝑁∗ − 0.5)= + 0.25. This is an inverted parabola with a maximum at 

𝑁∗ = 𝑁c4d∗ =0.5, and TU
∗

T2∗
= 0, at 𝑁∗ = 0	𝑎𝑛𝑑	1. You should be able to do a plot 

similar to Fig 3.10 now: 

 
Exercise 3) Problem 3.2 of Chapter 3 
3.2 Improve the protein synthesis rate of E. Coli during a cell cycle from section 3.1.3 
and 3.2.1 by including the effect of protein degradation. For simplicity, assume that all 
proteins are degraded at the same rate with a half-life of 60 minutes and work out and 
work out the number of ribosomes needed to produce the protein content of a new 
bacterium given that part of the synthesis is required for the replacement of degraded 
proteins. Compare with the results from the estimates in section 2.1.1 (page 38) 
On page 109 (section 3.2.1), the authors estimate the protein production rate as follows. 
There are 𝑁h1i3j3ckj = 	2 × 10% ribosomes in an E. Coli, and each ribosome can produce 
proteins at a rate of 𝑟lh3m2n =

(
=)
𝑠F((here the authors state that a ribosome can produce a 



protein in about 20 seconds. This gives a net growth rate of 𝛽lh3m2n =
𝑁h1i3j3ckj𝑟lh3m2n = 1000ph32k1Ej

j
. If we write the protein rate equation as: 
𝑑𝑁p
𝑑𝑡 = 𝛽lh3m2n, 

Then the number of proteins, Np, after the cell division of 𝜏T1q1j13E ≈ 3000𝑠 is simply: 
𝑑𝑁p
𝑑𝑡 = 𝛽lh3m2n → 𝑁p = 𝜏T1q1j13E𝛽lh3m2n + 𝑁p) = 3 × 10H, 

where the authors assumed that the initial number of proteins (destined for the second 
cell) is zero, 𝑁p) = 0. 
If we now assume that proteins decay with a half-life of 60 minutes or 3600s, then the 
physics of the problem is altered. As mentioned in the textbook, and in class, proteins are 
degraded by proteases, which are proteins. The rate of decay must be proportional to the 
number of the protein present, TUr

T2
= 	−𝑘Tkt4u𝑁p, with solution: 

𝑑𝑁p
𝑑𝑡 = 	−𝑘Tkt4u𝑁p → 𝑁p = 𝑁p)𝑒𝑥𝑝w−𝑘Tkt4u𝑡x, 

where 𝑁p) is the initial number of protein at t =0. The half life, t1/2, is the time that it 
takes for the number of proteins to be reduced to half its initial amount:  

𝑁 = 0.5𝑁p) → 𝑁p = 0.5𝑁p) = 𝑁p)𝑒𝑥𝑝w−𝑘Tkt4u𝑡(/=x = 𝑡(/= =
ln2
𝑘Tkt4u

→ 𝑘Tkt4u

=
𝑙𝑛 2
𝑡(/=

, 

with t1/2 = 3600s. All this assumes that the only process is protein decay.  
However, if we were to combined ribosomes production of proteins with protein decay, 
the differential equation (DE) become:	

𝑑𝑁p
𝑑𝑡 = 	𝛽lh3m2n − 𝑘Tkt4u𝑁p, 

We will assume a solution of the form 
𝑁p = 𝑁c4d ;1 − 𝑒𝑥𝑝w−𝑘Tkt4u𝑡x< 

Verify by direct substitution to left hand side (LHS) 

𝑑 ]𝑁c4d ;1 − 𝑒𝑥𝑝w−𝑘Tkt4u𝑡x<^

𝑑𝑡 = 𝑁c4d𝑘Tkt4u𝑒𝑥𝑝w−𝑘Tkt4u𝑡x = 	𝛽lh3m2n − 𝑘Tkt4u𝑁p. 
Then to right hand side 

𝑁c4d𝑘Tkt4u𝑒𝑥𝑝w−𝑘Tkt4u𝑡x = 	𝛽lh3m2n − 𝑘Tkt4u𝑁c4d ;1 − 𝑒𝑥𝑝w−𝑘Tkt4u𝑡x<, 
and with some rearrangement 
𝑁c4d𝑘Tkt4u𝑒𝑥𝑝w−𝑘Tkt4u𝑡x = 	𝛽lh3m2n − 𝑘Tkt4u𝑁c4d + 𝑘Tkt4u𝑁c4d𝑒𝑥𝑝w−𝑘Tkt4u𝑡x, 

which gives 

0 = 𝛽lh3m2n − 𝑘Tkt4u𝑁c4d → 𝑁c4d =
𝛽lh3m2n
𝑘Tkt4u

 

with the maximum number of proteins being: 𝑁c4d =
{|}~���
������

. 

Unit analysis (get units from above) gives 𝑁c4d =
{|}~���
������

 = ph32k1Ej∙j
��

j��
 = proteins. 



We can use this to evaluate 𝑘Tkt4u =
5E =
2�/e

= 5E =
BH))j

= 1.925 × 10F%𝑠F(, and if we 

assumed that the number of proteins must still be 𝑁c4d = 3 × 10H, and 𝛽lh3m2n =
𝑁h1i3j3ckj𝑟lh3m2n, with 𝑟lh3m2n =

(
=)
𝑠F(. 

𝑁c4d =
𝛽lh3m2n
𝑘Tkt4u

→ 3 × 10H =
𝑁h1i3j3ckj ×

1
20 𝑠

F(

1.925 × 10F%𝑠F( → 𝑁h1i3j3ckj = 1.155 × 10% 

If students do all of the above they can get full grades. 
Bonus: Some students may note that 𝑁h1i3j3ckj = 1.155 × 10% is actually less than the 
book’s original estimate of 2 × 10%. This does not make sense since if protein 
degradation is taken into account, then more proteins than the final value of  3 × 10H 
must be produced, which means that the number of ribosomes must be higher than 
2 × 10%. To obtain bonus mark students must do the following. If after t = 3000s the 
number of proteins must be 𝑁p = 3 × 10H, then we must have: 

𝑁p = 𝑁c4d ;1 − 𝑒𝑥𝑝w−𝑘Tkt4u𝑡x< → 3 × 10H = 𝑁c4d ;1 − 𝑒𝑥𝑝w−𝑘Tkt4u𝑡x<, 

where 𝑘Tkt4u =
5E=
2�/e

= 5E =
BH))j

= 1.925 × 10F%𝑠F(, and t = 3000 s. Solving for Nmax: 

𝑁c4d = 6.8 × 10H. 

Using 𝑁c4d =
{|}~���
������

→ 6.8 × 10H =
U}��~�~���×

�
e�j

��

(.�=S×()�Cj��
→ 𝑁h1i3j3ckj = 2.6 × 10%, 

which I will note is greater than the 20000 estimate in the book. 
Exercise 4) Problem 3.3 of Chapter 3 

 
 

 

 



 
 
3.3 a) A rough estimate of fig. 3.35 shows that the length of the visible DNA portion is 
2𝜇𝑚. Using data from table 1.1 (see last page of this document) the length of 1 basepair 
(bp) is ~ (

B
𝑛𝑚 = (

B
× 10FB𝜇𝑚. This gives the number bp of the DNA portion is 

=�c
�
�×()

���c∙ip��
= 6000𝑏𝑝. The fraction of the fly genome is H)))ip

(.@×()�ip
= (

B
× 10F%. 

b) The above shows figure 3.12 from the textbook of a DNA replication fork with two 
DNA polymerase, which I note is actually a big simplification of the actual process. To 
estimate the number of DNA polymerase in the cell, assume that all polymerases are 
attached to the DNA during replication. Since there are 4 bubbles in the DNA portion of 
3.35, there are 8 polymerases in that DNA portion. This gives a total number of 
polymerases @

�
�×()

�C = 240000. 

c) The distance between for 4 and 5 is about 0.5𝜇𝑚, or converting ).S�c
�
�×()

���c∙ip��
=

1500𝑏𝑝. If a replication fork moves at 40 ip
j

, then two adjacent forks should move 

together at a rate of 80 ip
j

, then fork 4 and 5 should collide after, (S))ip
@)�r� ,

=18.75s. 

d) Counting from the bottom up the distance from the center of bubble 1 to bubble 2 is 
0.8𝜇𝑚, and bubble 2 and 3 is 0.7𝜇𝑚, and bubble 3 and 4 is 0.6𝜇𝑚. Hence, the average 
distance is 0.7𝜇𝑚, or )./�c

�
�×()

���c∙ip��
= 2100𝑏𝑝.. The estimate of the DNA replication 

time is=())ip
@)�r� ,

=26.25s 

  

 



 


