PHYS 1211, QUIZ 6, November 6, 2017

Below **Box A**, $M_A = 2$ kg, is on a floor with **kinetic friction coefficient**, $\mu_k = 0.15$, and **static coefficient of friction**, $\mu_s = 0.25$. **Box A** is connect to a frictionless pulley system to **Box B**, $M_B = 3$ kg, resting on a 36.9°, with **no friction**. **Box B**, is connected by a frictionless pulley system, to **Box C**, $M_C = 10$ kg, as shown.

A) If Box C **moves down** a distance of 0.5 m. Calculate the **total work done** by Gravity on Box A, B, and C. $W_g = -mg\Delta y$, where Δy is the change in height. **Box A**, $\Delta y_A = 0$, $W_{g,A} = 0$. (**1 point**) **Box B**, $\Delta y_B = 0.5m \times \sin 36.9^\circ = 0.3m$, $W_{g,B} = -M_Bg\Delta y_B = -8.82J$. (**1 point**)

Box C, $\Delta y_c = -0.5m$, $W_{g,c} = -M_c g \Delta y_c = 49J$. (1 point) Total, $W_g = W_{g,A} + W_{g,B} + W_{g,C} = 40.18J$. (1 point)

B) Calculate the total work done by friction after Box C moves down 0.5m.

Only **Box A** is affected by friction, $f_k = M_A g \mu_k = 2.94N$, $W_f = -f_k (0.5m) = -1.47J$.

(2 points)

C) Calculate the **work done** by the **rope** connecting **Box B** and **C** on the **system**, after **Box C moves down** 0.5m.

In diagram, **Box C** moves **down** 0.5m in **opposite direction** of **tension**, T_{BC} , so work done is $-(0.5m)T_{BC}$, which **Box B** moves **up incline** in **same direction** of **tension**, T_{BC} , so work done is $+(0.5m)T_{BC}$, so total work is $-(0.5m)T_{BC} + (0.5m)T_{BC} = 0$. (**1 point**) D) Calculate the **work done** by the rope connecting **Box A** and **B** on the **system**, after **Box C moves down** 0.5m.

In diagram, **Box A** moves **right** 0.5m in **opposite direction** of **tension**, T_{AB} , so work done is +(0.5m) T_{AB} , which **Box B** moves **up incline** in **same opposite** of **tension**, T_{AB} , so work done is -(0.5m) T_{BC} , so total work is $(0.5m)T_{AB} - (0.5m)T_{AB} = 0$. (**1 point**) E) Assume **Box A** is initially **moving right** at 2 m/s. Use the **work-energy theorem** to calculate the **speed** of **Box A**, after **Box C** has **fallen** 0.5 m.

Work Final Kinetic energy Initial Kinetic Energy,
$$v_i = 2 \text{ m/s}$$

 $W_g + W_f = \Delta K = \left(\frac{1}{2}M_A v_f^2 + \frac{1}{2}M_B v_f^2 + \frac{1}{2}M_C v_f^2\right) - \left(\frac{1}{2}M_A v_i^2 + \frac{1}{2}M_B v_i^2 + \frac{1}{2}M_C v_i^2\right)$
 $38.71J = \frac{1}{2}(M_A + M_B + M_C)v_f^2 - 30J, M_A + M_B + M_C = 15kg, v_f = 3m/s.$ (4 points)
Students can get 12 out of 10

Students can get 12 out of 10.