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Chapter 1 
 

Physics—an Experimental Science 
 
 

The most incomprehensible fact of Nature is 
the fact that Nature is comprehensible. 

 
 

Albert Einstein 
 

 
Physics is an experimental science based on observations of the world 

around us. Experiment and theory have both played important roles in the 
development of our understanding of physics. Sometimes one or the other 
dominates in a particular advance in physics but often they are so 
interrelated as to make it difficult to separate the roles. Observations of 
physical phenomena often result in models or theories or in modifications to 
existing theories. These theories may be expressed in terms of constants, 
which must then be experimentally determined, or the theories may suggest 
possible phenomena for further experimental investigation. 

When a theory or model has been extensively tested and found to hold 
over a wide range of conditions, it may then be considered a ’law’ of 
physics. This may be the case even if it is eventually found that the law 
does not properly describe observed phenomena under other conditions. 
Thus, we use the laws of classical mechanics to describe a great many 
situations even though we know that in other circumstances the laws of 
quantum mechanics or relativity must be employed for a proper description. 
Classical mechanics is not so much wrong as it is limited. Likewise, the 
more general laws of quantum mechanics and relativity someday may be 
found to be too limited to describe certain observations. 
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This reliance on observation distinguishes the natural sciences from 
such areas as metaphysics and astrology. However, the natural sciences 
also are in contrast to the discipline of mathematics. A mathematical system 
or theory can be created and it need only be self-consistent. This is, of 
course, necessary but not sufficient for a physical law. A brief history of the 
quark theory, which was advanced independently in 1963 by Murray Gell-
Mann and George Zweig in an attempt to explain the nature of particles 
called hadrons, will illustrate the important connection between mathematics 
and physics. The hadron family consists of particles, like protons and 
neutrons, whose interaction is dominated by the strong nuclear force and 
the weak nuclear force. The original quark theory proposed that all hadrons 
were composed of combinations of three quarks (up, down and strange), 
which have fractional charges -1/3 and +2/3 times the charge of an electron, 
and three corresponding antiquarks. The model was successful in predicting 
many properties of the known hadrons however experimental discrepancies 
led to the suggestion, in 1967, of the existence of a fourth quark and 
antiquark (charm). Soon a new hadron, the meson J/\, which seemed to be 
composed of a charm quark and antiquark pair was discovered 
simultaneously by groups headed by Samuel Ting at Brookhaven National 
Laboratory and by Burton Richter at Stanford University. Discoveries of 
even more hadrons led to the proposal of two new quarks named top and 
bottom. The problem with the quark model was that for many years, and 
despite numerous experiments, no isolated quarks had been observed and 
quarks were increasingly regarded as mathematical entities.  

However, indirect evidence was beginning to accumulate. In 1968, the 
SLAC-MIT experiment performed by Jerome Friedman, Henry Kendall and 
Richard Taylor at the Stanford Linear Accelerator Centre revealed an inner 
structure to protons and neutrons which showed electrical charge was 
concentrated to components of negligible size. Experimental evidence was 
also found for the existence of the electrically neutral gluons, which hold the 
quarks together. Friedman, Kendall and Taylor, a Canadian, were awarded 
the Nobel Prize in Physics in 1990 for this pioneering work. Today there is 
firm evidence for the existence of all six quarks. The bottom quark was 
discovered at Fermilab in 1977 and the very massive top quark in 1995 
using a large particle accelerator called the Tevatron. Thus, after many 
years, the quark model can be accepted as a law of physics.  
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There are valid reasons for performing experiments for both physics 
researchers and students: (a) to determine the functional relationship 
between parameters, (b) to test the validity of a model or theory, (c) to better 
determine a constant used in a theory or law to describe a relationship. 
There are examples of each of these types of experiments in this manual. It 
is hoped these experiments will reinforce concepts discussed in the 
lectures, introduce related material, provide practise in measurement 
techniques, data analysis and report writing, and encourage your interest in 
physics. 
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Chapter 2 
 

Graphical Representation of Data 
 
 

. . . that I have succeeded in proposing a new and useful mode of 
stating accounts has been generally recognized . . . As much 

information may be obtained in five minutes as would require whole 
days to imprint on the memory, in a lasting manner, by a table of 

figures. 
 
 

William Playfair (1786) 
 

The tool that William Playfair was speaking of in the quote above was 
the graph. Though Rene Descartes first described the principles on which 
the modern graph is based in 1637, it was not until the early part of the 20th 
century that its use became standardized and widespread.  

One need only consider a simple table of related values to see the 
power in the graphical method. Consider the following table. 

 
x y 
-8 -11.13 
-6 -8.13 
-4 -5.13 
-2 -2.13 
0 0.88 
2 3.88 
4 6.88 
6 9.88 
8 12.88 
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What is the cause and effect relationship between x and y? This general 

relationship between two parameters is often what is being looked for 
through experimentation. Determining it by trying to find the pattern strictly 
from the numbers in the table can be quite difficult, even when the 
relationship is simple. The graphical method gives a pictorial view that 
provides valuable information.  
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Figure 2.1: Plotted Data 

 
Graphing the data shows a linear relationship in this case. This visual 

representation of the data makes analysis much easier. 
The aim in an experimental study is to vary one condition at a time while 

holding all others constant and observe the effect on the quantity that is 
suspected to depend on the first. The existing relationship is most easily 
interpreted from the graph if the first quantity, the independent variable, is 
plotted on the abscissa scale (the horizontal or x-axis) and the dependent 
variable is plotted on the ordinate scale (the vertical or y-axis). For example, 
say you were interested in finding out how the period of a simple pendulum 
varies with the pendulum's length. The instruction in the lab manual would 
ask that you plot T vs. L. The period (T) would go on the vertical axis and 
the length (L) on the horizontal one. 

The choice of an appropriate scale is also an important factor when 
plotting a graph. The scale for either axis should be chosen such that the 
entire range of values may be fit onto the graph. Major divisions should be 
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picked in a way that they are easily subdivided. Divisions on the vertical and 
horizontal axes need not be the same.  

2.1 Plotting and Drawing the Curve 
 
Use a sharp pencil and make small dots to locate the points. The 
coordinates of the points are not generally written on the graph paper. 
Carefully encircle each of the data points with a 2 to 3 mm circle. It will not 
always be possible to make all of the points fit on a smooth curve. In cases 
such as this, a smooth curve should be drawn through the series of points to 
follow the general trend as shown in figure 2.2(b). 

 
(a) Incorrect Fit for Trend    (b) Correct Fit for Trend 

Figure 2.2: Fitting Curves to Data 

 
Sometimes a data point appears to have no relationship to the rest of 

the data. You should take care not to give the point to much weight when 
considering the best fit. The graph points out that this point may be 
inconsistent with the other measurements. It is usually useful, whenever 
possible to re-evaluate or re-determine the apparent inconsistency.  

2.2 Analysis and Interpretation 
 
A principal advantage of the graphical method is the ease with which 
information can be obtained. The shape of the graph tells us immediately 
how the dependent variable changes with a change in the independent 
variable. Of the multitude of possibilities for graphs, the straight line is by far 
the easiest to analyze.  
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2.2.1 The Straight Line: A Linear Relationship 
 
The equation of a straight line is bmxy � . These equations have a 
dependent variable called y and an independent variable called x. The 
letters x and y, often used in mathematics to represent variables, are rarely 
used for this purpose in physics. Variables in physics are often denoted by 
the first letter in the name of the quantity being considered. An example is v 
for velocity. Many cases also exist where the quantities have been given 
special symbols, such as letters from the ancient Greek alphabet, like ĭ and 
ș that are used to denote angles. The slope of the line, m, gives the rate at 
which the dependent variable changes with respect to the independent 
variable. The last piece of the puzzle represented by this equation is the y-
intercept, b. This is usually related to an initial condition. 

Consider an example of an apparatus that measures the speed, at 
different times, of a ball dropped from rest. The ball in this case is under the 
influence of a constant acceleration, the acceleration due to gravity, g. The 
equation describing the change in the ball's speed with time is 

0vgtv �  
The initial condition is the ball's speed at the instant prior to it being 
dropped. Since the ball is dropped from rest, its initial speed is zero. Thus, 
v0 = 0. A data set from such an experiment is given below.  

t(s) v(m/s) 
0.000 0.000 
0.500 4.998 
1.000 9.604 
1.500 14.480 
2.000 19.603 
2.500 25.235 
3.000 29.429 
3.500 33.957 
4.000 39.396 
4.500 43.439 
5.000 50.225 

 
Figure 2.3 shows the plotted data and a best-fit line. Points A and B are 

chosen such that they are on the line and their coordinates are used to 
determine the slope, g.  
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Figure 2.3: gtv   

2.2.2 Nonlinear Relationships 
 
A great many of the natural phenomena that are explored in physics are 
described by relationships that are not linear. The displacement, velocity 
and acceleration of an ideal harmonic oscillator, for example, are sinusoidal. 
Other nonlinear relationships that are quite common are power law and 
exponential relationships. We have powerful mathematical tools at our 
disposal to deal with the analysis of these last two types of relationships. 

 An example of a power law relationship comes from the study of fluids. 
Suppose that we are interested in how force is transmitted through a fluid 
between two connected cylinders. Say the apparatus consists of a fixed 
diameter cylinder connected to one that has a variable diameter. We vary 
the diameter of the one cylinder while measuring the force it produces when 
a fixed force is applied to the other. A typical dataset is plotted in Figure 2.4. 
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 Figure 2.4: Force Transmitted Through a Fluid 
 
Our final example is the exponential relationship that tells us how the 

pressure of an ideal gas changes with height. This is often used as a model 
to estimate the changes in atmospheric pressure with changes in altitude. 
Consider a weather balloon fitted with an altimeter, a barometer and a radio 
to relay the data to the surface. The plot of such an experiment could look 
like the graph shown in Figure 2.5.  

The previous examples were created using known relationships but 
experiments often explore undetermined relationships.� Suppose that we do 
not know what the relationships are. Determining them from the data as 
collected could be somewhat difficult. What tools do we have at hand to 
simplify the job? 

 
The Exponential Function and Logarithms 
 
In its most general form the exponential function )(xg  is given by 

 xaxg  )(  (2.1) 
where 1za  and x  is any real number. Now for 0!x , 0!a , and 1za  the 
logarithmic function is given by 
 )(log)( xxf a  (2.2) 
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Figure 2.5: Atmospheric Pressure 

 
The logarithm is the inverse of the exponential function. This 

means that we can recover the exponent x  as follows 
 )(log xaax   (2.3) 

The most commonly used logarithm are the common logarithm, which 
has a base of 10, and the natural logarithm, which is of base e. 

Since logarithms are exponents they follow the simple rules of 
exponents: Say nau  and mav   

 
RULE 1: 
 )(log)(log)(log vuuv aaa �   (2.4) 

which follows from )( mnmn aaa �  
 
RULE 2: 

 )(log)(loglog vu
v
u

aaa � ¸
¹
·

¨
©
§  (2.5) 

 
which follows from )( mnmn aaa � y  
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RULE 3: 
 )(log)(log uxu a

x
a   (2.6) 

 
which follows from nxxn aa  )(  

 
The common logarithm is a powerful ally when it comes to the analysis 

of nonlinear data, so much so that special graphing paper has been 
designed that makes the calculation of the logarithms themselves 
unnecessary. The user need only plot the data points directly on the paper. 
The layout of the paper calculates the logarithm. The graphing paper is 
available in both log-log and semilog styles. The log—log version takes the 
logarithm of both sides of the functional relationship whereas the semilog 
version takes the log of only one side. 

 

 
Figure 2.6: Single Cycle log-log Paper 

 
The number of cycles is the number of powers of 10 that can be 

displayed on the graph. The division indices shown on the axes are 
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multiplied by the power of 10 chosen for each separate axis. As an 
example, say your data ranges from 12 to 87. This range will fit into a cycle 
based on 101. Multi-cycle graph paper will be required when the data ranges 
over many powers of 10. 

Let's analyze the "Force on a Piston" data using this powerful graphing 
technique. The radius data ranges from 0 to 6 and the force data from 0 to 
100. This means that a single cycle is required on the horizontal axis and 
two cycles are needed for the vertical one. The data is plotted directly on the 
graph paper. It is important to remember that no logarithms need to be 
calculated, the paper does that. The resulting graph is a straight line. This 
implies that the equation is of the form nrF v . The slope of the line gives 
the power n to which the independent variable, in this case the radius, is 
raised. The calculation of the slope however requires that the logarithms of 
the abscissa and ordinate be calculated at two points. Otherwise, the slope 
calculation follows the standard prescription 

 
12

12

xx
yym

�
�

  where ))log(),(log(),( iiii Fryx {  (2.7) 

 

 
 

Figure 2.7: Logarithm Plot of the Force Transmitted Through a Fluid 
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The slope calculation for figure 2.7 gives m = 2 which determines that the 

functional relationship between the Force and the cross-sectional Radius is 
2rF v  
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Chapter 3 
 

Uncertainty of Measurements 

 
. . . if two persons start to count the vibrations, the one the large, the  
other the small, they will discover that after counting tens and even  

hundreds they will not differ by a single vibration, not even by a 
fraction of one. 

 
 

Galileo 

A measurement may be done quite accurately and using the best 
experimental technique, but no measurement of a physical quantity is exact. 
An experimenter needs to know not only the magnitude of a measurement, 
but also with what accuracy the measurement was performed. Suppose the 
length of an object is measured to be 5.34 cm, but the accuracy is such that 
the uncertainty of the measurement is 0.02 cm. This means that the actual 
length of the object according to this measurement is between 5.32 cm and 
5.36 cm. This measurement and its uncertainty can be written as 
5.34 ± 0.02 cm. Here the uncertainty has been expressed in absolute terms. 
Another way to express this uncertainty is to write it as a percentage of the 
measured quantity, i.e. 5.34 ± 4%. It is necessary to know how to make 
reasonable estimates of the uncertainties involved in any physical 
measurements, and how to handle the propagation of these uncertainties 
when measured quantities are manipulated mathematically. The uncertainty 
should be stated by no more than two digits and measured value should not 
include digits outside the limits of this uncertainty, i.e. 5.34 ± 0.02 rather 
than 5.342 ± 0.02. 
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 It is necessary to understand the difference between two terms used in 
the discussion of measurement:  

a. accuracy refers to uncertainty involved in the magnitude of the 
measurement in comparison with the accepted international standard, 
whereas  

b. precision or reliability refers to the reproducible sensitivity of a 
measurement.  

To better understand the distinction between the two, consider the 
following examples involving a copper rod. If the density of the rod is 
experimentally determined to be 8.8 ± 0.2 g/cm3 then the result is accurate 
in comparison to the accepted density for copper, 8.9 g/cm3, and fairly 
precise with an uncertainty of less than 2.5%. If we wish to know the length 
of the rod, then it is the accuracy of the measurement that is important. In a 
measurement of the change in length of the rod due to thermal expansion, 
the precision is more important. 

There are many causes for inaccuracy or errors in measurements. 
These are sometimes divided into two types. Systematic errors are the 
result of unwanted effects that show up as consistent or reproducible errors. 
Systematic errors may be present due to poor experimental technique or 
apparatus. For example, a voltmeter may be incorrectly calibrated and 
hence give consistently high readings. Random errors or scatter are 
present in all measurements. These are the results of non-reproducible 
effects and tend to be random in their sign and magnitude. They can result 
from such things as temperature variations or estimations of scale division 
fractions.  

 

3.1 Propagation of Errors 

3.1.1 Addition and Subtraction 
 
If two measurements of length are 6.4 ± 0.1 cm and 12.3 ± 0.2 cm, then 
when the two objects are placed end to end, the total length must be 
between (6.4-0.1)+(12.3-0.2) = 18.4 cm and (6.4+0.1)+(12.3+0.2) = 19.0 cm. 
This is the same as adding the magnitudes and adding the uncertainties to 
obtain 18.7 ± 0.3 cm. A similar thought experiment for subtraction will show 
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that the errors also add. Thus for both addition and subtraction, the 
absolute uncertainties add. This can be expressed mathematically with ǻx 
and ǻy representing the uncertainty in measurements of x and y 
respectively: 

)()( yyxxzz 'rr'r 'r  
)()( yxyx '�'rr  

Thus the uncertainty in z is 
 
  yxz '�' '   (3.1) 

3.1.2 Multiplication and Division 
 
Consider the uncertainty in a quantity z that is the product of two 
measured quantities x and y, each having their own uncertainty. 
That is  

))(( yyxxzz 'r'r 'r  
)( yxxyyxxy ''�'�'r  (3.2) 

The term yx''  within the brackets in equation (3.2) is of second 
order in the error terms and can be neglected ( xyyxyx '�'��'' ). 
Thus, we write that 
  )( xyyxxyzz '�'r 'r  (3.3) 

 
Clearly the uncertainty in z is 

zyyxz '�' '  (3.4) 
  

Dividing equation (3.4) by xyz   yields 

y
y

x
x

z
z '

�
'

 
'  (3.5) 

  
A similar result holds for division. Hence, for multiplication and 
division, the percentage errors add. 

As an example, consider the division 

05.020.1
5.03.64

r
r

 x  

In order to perform this division the uncertainties must be converted 
to either relative form or percentage form: 
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%2.42.1
%8.03.64

2.1

3.64

20.1
05.0

3.64
5.0

r
r

 
r

r
 x  

 
Now the division can be performed and the uncertainties added to 
yield 

%56.53 r x  
7.26.53 r  

 
Note that results are always written with the uncertainties in absolute 
form with the uncertainty stated in no more than two digits and the 
experimental value rounded appropriately. 

It also follows that if either x or y is a constant then the 
percentage error is unchanged and the absolute uncertainty is 
simply divided or multiplied by the constant just as is the magnitude 
of the measurement. Thus, for the expression kxz  , where k is a 
constant, we have 

 
 )( xxkzz 'r 'r  (3.6) 
 

and 
 xkz ' '  (3.7) 
 

For example 
 

 3(64.3±0.5) = 3(64.3) ± 3(0.5) 
 = 129.9±1.5 

 
or, equivalently 
 
 3(64.3 ± 0.5) = (3 ± 0)(64.3 ± 0.5) 

 = (3 ± 0%)(64.3 ± 0.8%) 
 = 192.9 ± 0.8% 

 = 192.9 ± (
100

8.0
 * 192.9) 

 = 192.9 ± 1.5  
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3.1.3 Powers & Roots 
 
Integral powers are a special case of multiplication, so we would 
expect to simply multiply the uncertainty by the power. It can be 
shown that the expected integral result holds for in general for real 
valued exponents. Thus if a quantity having uncertainty is raised to 
some power, say, 
 
 yxxzz )( 'r 'r  where R�y  (3.8) 
 
 then the percentage uncertainty is given by 

 
x
xy

z
z '
 

'  (3.9) 

 
For powers and roots of a measurement, the uncertainty of the 
result is the product of the exponent and the percentage 
uncertainty of this measurement. 
 
Consider the following example 

 2
1

)2.04.5( r x  

2
1

%)44.5( r  

%)4(
2
1)4.5( 2

1

r  

%232.2 r  
05.032.2 r  

 

3.1.4 Logarithms 
 
You may occasionally need to consider the uncertainty of the 
logarithm of a measurement. We shall only state the result here. If 
 
 )log( xxzz 'r 'r , 
then 
 ))log()log(,)log()log(max( xxxxxxz �'��'� '  (3.10) 
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Summary 
 

Table I.3.1: Summary of Error Analysis Rules 
Operation Error Term 

yxz r  yxz '�' '  

xyz   or 
y
xz   

y
y

x
x

z
z '

�
'

 
'  

kxz   where k is a constant xkz ' '  

yxz   x
xy

z
z '
 

'  

)log(xz   
¯
®
­

�'�
�'�

 '
)log()log(
)log()log(

max
xxx
xxx

z  

 

3.1.5 Graphing and Uncertainties 
 
When experimental data is plotted on a graph, the uncertainties can 
be indicated by error bars. Sample data points are plotted in figure 
3.1 with error bars for the y-parameter drawn to scale. We shall 
assume here that the uncertainty in the x-parameter is too small to 
appear on this graph although it is common to plot data with 
uncertainty in both the x and y-coordinates. What is the uncertainty 
in determining the slope of the line through the data points? The 
solid line indicates a visual best fit to the data. The dashed lines 
indicate the maximum and minimum slopes, which are consistent 
with the data, each passing through or near as many error bars as 
possible. From the graph, it is evident that the experimentally 
determined slope lies between the maximum and minimum values. 
The slope can be expressed as 
 
 ),max( maxmin mmmmmmm bestbestbest ��r 'r  (3.11) 
 
which reflects the range of possible slope values. 

As an example of this technique, refer to figure 3.1 where mbest=2.5, 
mmax=2.9, and mmin=2.0. The experimentally determined slope is 
then 5.05.2 r . The y-intercept and its uncertainty can be determined in the 
same fashion, where, in figure 3.1, 0.6 bestb , 0.8max  b , and 5.3min  b . Our 
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method determines the intercept to be 5.20.6 r . Combining these results 
gives us the equation for the data graphed in figure 3.1: 

)5.20.6()5.05.2( r�r xy . It is important to note that if measurements are 
made over a greater range of x and y parameters, then, though the 
uncertainty in each measurement may be the same, the uncertainty in the 
slope and intercept will be reduced. 

 

 
 

Figure 3.1: Data plotted with error bars. The solid line is a best fit, and the 
dashed lines represent the minimum and maximum slopes indicated by the 
data. The slope lines have been extrapolated to obtain the y-intercept. 
 

3.1.6 Distribution of Measurements 
 
It is constructive to look a little more closely into the meaning of the 
term random error. It is assumed that each measurement, x, is just 
one of a set of a very large number, N, of possible measurements 
and it is also assumed that this theoretical set of measurements 
would be distributed symmetrically about the mean value, x , so that 
if the number of measurements that yield a value x, nx, is plotted 
against the measurement, x, a graph of the form shown in figure 3.2 
would be obtained. This theoretical distribution is known as a 
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Gaussian or normal distribution. The assumption that any particular 
set of measurements will be Gaussian is not always justified, but 
because of its great mathematical simplicity, this assumption is 
usually made. 

 x ��V�V��V �V

nx

 
  Figure 3.2: Gaussian Distribution 
 
The width of this distribution is clearly related to the error of each 
measurement, and the mean value, x , is the one with the highest 
frequency. It is usual to define a quantity, ı, known as the standard 
deviation: 
 

 ¦
 

�¸
¹
·

¨
©
§ 

N

i
i xx

N 1

2)(1V  (3.12) 

 
which is a measure of the spread of the distribution. In fact, it can be 
shown that 68% of the measurements will fall within the range 

Vrx and that 95% will be in the range V2rx . The meaning of this 
for the first year laboratory is that if we make a single measurement 
of some quantity x, it has a 68% chance of being within Vr of the 
true value x in a very large set of measurements. We will be using 
the standard deviation ı as the error estimate.  
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Chapter 4 
 

Laboratory Notebook and Report 
 
You have formed a theory, then? At least I have a grip of the essential 
facts of the case. I shall enumerate them to you, for nothing clears up 

a case so much as stating it to another person . . . 
 
 

Arthur Conan Doyle 
 

 A laboratory notebook is simply a record of an experiment as it 
is performed. A university physicist investigating the electrical 
properties of a semiconductor, a government chemist monitoring 
pollution, an engineer doing testing or development work for a 
corporation will all keep some form of notebook. Later each of these 
people will usually write a report utilizing the information contained in 
their notebooks. The report may take the form of an article in a 
scientific journal, a report to a government agency or a submission 
to a corporate executive. In this course, you will also be required to 
keep careful notes about your laboratory work and submit a brief 
report at the end of each experiment. 

Your lab notebook should contain enough information about the 
experiment so that later you, or someone else, can understand what 
has been done without referring to the lab manual. Data, notes 
about experimental techniques, equations, calculations, sources of 
error, graphs, conclusions, etc. should all be entered. Accuracy is 
the other primary requirement in a notebook; it does little good to 
record an observation if it is not correctly noted. Literary style is of 
no real concern; a phrase, a few sentences or a diagram will often 
provide a proper explanation. Clarity and organization are of great 
value in a lab notebook. 
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Although there are many ways of recording an experiment, the 
following sections are often included in a student lab report. The use 
of subtitles will help organize your laboratory work. Detailed 
instructions regarding lab reports will be provided by your course 
professor, the First-Year Lab coordinator and the laboratory 
teaching assistant supervising your lab section. 

Students should prepare for each lab class by carefully reading 
both the experiment and the suggested pre-lab readings, by 
designing data tables suitable for the experiment and by carrying out 
required advance calculations. Many of the questions found at the 
end of the experiments can be answered prior to the lab class. The 
laboratory experiments are, in most cases, synchronized with the 
lecture material so you will find your class notes a useful reference. 

Your lab notebooks will be graded and a mark will be assigned 
to your lab report. The mark will reflect your experimental technique, 
results and the quality of your report. Lab reports will be marked in 
reasonable detail with emphasis on the data, analysis and results, 
and conclusion sections. Lab notebooks are usually returned at the 
beginning of the next lab period. 

Prior to each experiment, your laboratory instructor will briefly 
discuss the theory, use of the equipment, any cautions to be 
observed and review any special data analysis techniques required. 
Please feel free to ask questions during this discussion or if you 
encounter difficulties either in performing your experiments or writing 
your reports. 

4.1 Lab Report Format 
 
PURPOSE 
 
The purpose of your experiment consists of one or two sentences 
describing what is being tested, investigated or measured. State the 
purpose in complete sentences, avoiding the use of the first person 
(I). DO NOT COPY THE PURPOSE DIRECTLY FROM YOUR LAB MANUAL. 
 
 
APPARATUS 
 
List the apparatus used in the experiment, as it is being performed. 
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Often a carefully labelled sketch or circuit diagram is the best way of 
describing the apparatus. 
 
 
THEORY AND PROCEDURE 
 
A detailed theory and procedure is found in your lab manual; DO NOT 
COPY THIS INTO YOUR REPORT. In your report, unless otherwise 
indicated, briefly discuss only theory or technique that differs from 
the manual. 
 
 
DATA 
 
The data section of your report should have a title, date and include 
the name of your lab partner. All data should be recorded directly 
into your notebook as the experiment is being performed. Whenever 
possible, data should be recorded in tables. Each table should have 
a title and column headings. Units and uncertainties, if required, 
should be included in the headings. If a mistake is made in entering 
data, draw one or two lines through the error(s) and record the 
correct data. Do not erase or cover errors in any way. The data 
recorded for each experiment should be accurate, detailed and 
concise. In some cases, it will be convenient to place the results of 
intermediate and final calculations in additional columns of your data 
table. The experiment must be performed and the data recorded in 
your notebook during the lab period. 
 
 
ANALYSIS AND RESULTS 
 
Briefly describe the analysis performed to accomplish the purpose of 
the experiment. It may be convenient to separate this section into 
parts corresponding to your manual. In each part, you may be 
required to show sample calculations for each type of calculation 
performed in your experiment. Include a complete error analysis, if 
required. The results of calculations may be stated as equations, 
placed in tables or in additional columns of your data table, if 
appropriate. Indicate where all graphs and the corresponding data 
tables may be found. Be sure all graphs have descriptive titles and 
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clearly labelled axes. Show all slope and intercept calculations 
directly on your graph. Summarize the main findings from the graphs 
in your results section. Show numerical comparisons to accepted 
values. 
 
 
CONCLUSION 
 
A concluding discussion or the implications of your results is 
included in this section. Discuss the qualitative and quantitative 
results in relation to the expected behaviour or theory and try to 
explain any discrepancies. Discuss the accuracy and precision of 
your experimental results and any possible sources of error. You 
may also want to include suggestions concerning improvements to 
the experiment. 
 
 
QUESTIONS 
 
Answer any questions found at the end of the experiment. It is not 
necessary to re-write the questions.  
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Experiment 1 
 

Force Vectors 
 
 
 
Purpose 
 
The objective of this lab is to measure unknown masses by 
balancing them with known masses on a force table.  
 
Apparatus 
 
The equipment required for this experiment consists of one Pasco 
force table (illustrated on Fig.1.1). The table has several 
components: a rim of which is marked so angles can be measured 
in degrees, three pulleys placed at set angles from which mass 
holders are hung. The equipment also includes a box of disks of 
known weight which can be added to the mass holders by sliding the 
disks down the shaft of the holders. Finally, you are also provided 
with two pairs of unknown cylindrical masses. Masses in one pair 
are of the same color.  
 
Theory 
 
Masses hanging from the table are subject to the gravitational force, 
which is proportional to the masses. When the forces sum to 0 as 
vectors, the table is balanced. Experimentally, this equilibrium is 
reached when the white plastic ring is at the center of the table, 
above the black target circle.  
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 Figure 1.1: The Pasco force table. 
 
The force on the plastic ring resulting from the suspension of a mass 
m is 
 rmkF &&

  (1.1) 
 
Thus, if there are three masses hanging from the table, we have, at 
equilibrium: 
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The vectors 1r

&
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 and 3r
&

 all have the same length r , so the vector 
equation (1.2 ) can be resolved in its x̂ and ŷ components: 
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The length r cancels out of these equations. The angles 1T , 2T and 3T  
required for the trigonometric resolution of the vectors can be 
deduced from the (fixed) angles 1D , 2D and 3D  of the pulleys on the 
disk. Given a mass (say, m1), the two equations (1.3) can be solved 
for the two remaining unknowns m2 and m3. 
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Procedure and Analysis 
 
Important notice: The plastic holders have a mass of 5 g. 
 
0: Pre-verify your setup by making sure you have the correct sets 

of unknown masses. Make sure the plastic screw in the center 
of the table is raised and that the white plastic ring is around 
this screw. Make sure the pulleys are free from the rim of the 
table and can move freely. 

 
  
Figure 1.2: A pulley attached to the rim of the table. The pulley can 
rotate freely without touching the rim. 
 
Part 1: balancing one known mass with two other masses. 
 

a: Place a mass M1 = 20 g in the first holder. Find the masses 
M2 and M3 that will balance your table. (Remember to include 
the mass of the holders). Have your TA verify the result. 

b: Remove all masses and now place a mass M2 = 20 g in the 
second holder. Find the masses M1 and M3 that will balance 
your table. Have your TA verify the result. 

c: Remove all masses and place a mass M3 = 20 g in the third 
holder. Find the masses M1 and M3 that will balance your 
table. Have your TA verify the result. 
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Figure 1. 3: A mass holder with some masses added. 
 
 
Part 2a: Balancing two unknown masses with a variable mass. 

Insert the brass unknown masses m1 and m2 in the 
appropriate holders. Find the mass m3 that will balance your 
table. Have the TA verify the result. 

 
Part 2b: Verifying your result. Double now the mass m3 found in 

Part 2a. Add masses of known weights to the holders so the 
table is balanced again. Compare the masses added to m1 
and m2 with m1 and m2. Discuss the result. Advise your TA 
that you are done with Part 2. 

 
Part 3: Change setup. Set your pulleys at the set of angles specified 

for the aluminum masses. 
 
Part 3a: Repeat Part 2a using this time the pair of aluminum 

unknown masses. 
 
Part 3b: Verify the results of 3a by doubling the mass m3 found in 

Part 3a. Add masses of known weights to the holders so the 
table is balanced again. Compare the masses added to m1 
and m2 with m1 and m2. Discuss the result. 
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Conclusion 
 
Discuss why doubling the masses m1 in Parts 2 and 3 allows you to 
obtain directly the values of M2 and M3. Provide final values for your 
unknown brass and aluminum masses. Explain why a set of masses 
is tied to a particular setup. Provide a table of the ratios M2/M1 (or 
m2/m1) and M3/M1 (or m3/m1) for Part 1a, 1b and 1c, and for parts 2a 
and 2b. Discuss any similarities or differences. 
 
 
Required Angles 
 
The unknown masses are in the mass kits provided with the force 
table. They are meant to be used in pairs corresponding to the same 
type of metal. That is, a given pair of aluminum or brass masses are 
to be used together. The following tables identifies the angles at 
which the unknown masses are to be placed as well as the angle 
required for the balancing mass m?. Each mass has an identifier 
stamped on it. The identifier for aluminum masses begins with the 
letter A followed by a number. The brass masses are identified with 
the letter B followed by a number.  
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Table II.1.1: Required Angles 
 

Mass Identifier & Angle Mass Identifier & Angle Mass Identifier & Angle 

A1ĺ 223° A2ĺ 130° m?ĺ 0° 
B1ĺ 140° B2ĺ 290° m?ĺ 343° 
A3ĺ 134° A4ĺ 234° m?ĺ 6° 
B3ĺ 121° B4ĺ 227° m?ĺ 359° 
A5ĺ 143° A6ĺ 228° m?ĺ 3° 
B5ĺ 116° B6ĺ 246° m?ĺ 13° 
A7ĺ 188° A8ĺ 250° m?ĺ 36° 
B7ĺ 218° B8ĺ 249° m?ĺ 50° 
A9ĺ 130° A10ĺ 225° m?ĺ 7° 
B9ĺ 158° B10ĺ 249° m?ĺ 25° 

A11ĺ 111° A11ĺ 0° m?ĺ 254° 
B11ĺ 85° B12ĺ 359° m?ĺ 216° 
A13ĺ 111° A14ĺ 170° m?ĺ 318° 
B13ĺ 129° B14ĺ 200° m?ĺ 341° 
A15ĺ 115° A16ĺ 261° m?ĺ 15° 
B15ĺ 231° B16ĺ 119° m?ĺ 7° 
A17ĺ 282° A18ĺ 161° m?ĺ 27° 
B17ĺ 142° B18ĺ 253° m?ĺ 9° 
A19ĺ 160° A20ĺ 240° m?ĺ 24° 
B19ĺ 135° B20ĺ 270° m?ĺ 31° 
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Experiment 2 
 

Graphical Analysis 
 
 
 
Purpose 
 
The purpose of this experiment is to explore how graphical data 
analysis techniques can be used to determine functional 
relationships between experimentally measured quantities.  
 
 
Apparatus 
 
The apparatus for this experiment includes two masses having a total mass 
of 600 grams, a c-clamp, a safety block, two metre sticks, and a variety of 
mounts and rods.  
 
Theory 

 
Graphical Analysis 
 
A functional relationship is a mathematical expression that describes 
the dependence between two or more experimentally measured 
quantities. An efficient and easy way to determine a functional 
relationship is to plot a graph of the experimental data and then 
analyze the graph. 

In most cases, experiments are designed to look at how a given physical 
quantity changes when one other controllable quantity is changed while 
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holding all other changeable quantities constant. This method allows for 
analysis using two-dimensional graphs. 

The simplest graph to interpret is a straight line. Data that generates a 
straight line identifies a linear relationship between physical quantities. 
Assuming that we have assigned the symbol x to the independent physical 
quantity and the symbol y to the dependent one, we say that the functional 
relationship between y and x is described by the statement,  

 
y is directly proportional to x 

 
or 
 

xy v  
Relationships between experimental variables that do not generate a 

straight-line graph are said to be non-linear. How do we find the correct 
relationship? One method that we can use to analyze non-linear 
relationships involves the use of logarithms. Logarithms can be used to 
linearize relationships. Consider the functional relationship  
 

zxy v  
 
where z is any Real number. This non-linear relationship can be linearized 
by taking the base 10 logarithm of both sides of the expression 
 

)log()log( xzy v  
 
Plotting a graph of )log(y versus )log(x will yield a straight line with slope z. 

Using logarithmic graph paper eliminates the need to calculate the 
logarithms of the data points. The construction of this graph paper allows 
the user to plot the data directly. Its scaling determines the logarithm. 
Logarithms need only be calculated when determining the slope of the 
graph. 

Detailed information on logarithms and the use of logarithmic graph 
paper can be found in the logarithm section of chapter 2 beginning on 
page 120. 

NOTE: Logarithmic graph paper is included at the end of this chapter 
and also in Appendix 2. 
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Bending of the Beam: Elasticity 
 
Elasticity describes the ability of a system to spontaneously return to 
its original configuration after having been distorted. The modulus of 
elasticity is a parameter that describes this ability for a given 
material. Defined as the ratio of stress (applied force) to strain 
(resultant distortion), this number gives us a sense of how much 
pressure a given material can take before it deforms or breaks. For 
example, oak’s modulus is about 14 GPa whereas that of soft 
biological tissue is about 2 MPa. The modulus does not by itself 
provide a complete picture since the response is also dependent on 
the geometry of the material being investigated. 

When a small weight is suspended from the free end of a 
wooden metre stick of rectangular cross-section, the metre stick 
undergoes a small vertical deflection. The vertical deflection y is 
related to the length of the extension L of the free end by a power 
law relationship of the form nLy v  
 
 
Procedure 
 

 
 
a. Determine and record the error in using the metre sticks as 

measuring devices. 

b. Place the metre stick along one edge of the table carefully 
aligning the metre stick’s length with the table. 

c. Extend the metre stick the desired distance beyond the end of 
the table. 



EXPERIMENT 2. GRAPHICAL ANALYSIS 
 

 

39

d. Place the safety block across the top of the metre stick and 
clamp the block and metre stick to the table. 

e. Determine and record the extension of the metre stick. 

f. Place the vertical metre stick near the end of the one to be 
deflected, then determine and record the initial position of the 
metre stick to be deflected. 

g. Carefully hook the two mass combination to the end of the 
metre stick and allow the weight of the masses to bend the 
stick. Carefully support the hanging masses until the stick stops 
deflecting under the weight. As long as you are careful, any 
oscillations will die down quickly. 

h. Determine and record the final position of the deflected metre 
stick. 

i. Repeat until all required data has been acquired. 

 

Table II.2.1: Sample Data Table 

Initial Position (cm) Final Position (cm) Extension (cm) 

00 yy 'r  ff yy 'r  LL 'r  

 

Follow the procedure outlined above and collect deflection versus 
extension data from 40 cm to 90 cm of extension inclusively. Collect 
data every 5 cm over this range. Record the metre stick extension, 
that is, the length that extends beyond the end of the table, the 
metre stick’s initial vertical position without the addition of the 
masses and its final vertical position after the masses have been 
added. Make sure to check the initial position before each trial. 
 
Analysis 
 
Our analysis will determine the functional relationship between the 
deflection and extension of the metre stick. The Deflection for a 
given Extension is calculated from the initial and final position as 
shown in the equation 
 0yyy f �  (2.1) 
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Plot graphs of Deflection, y, versus Extension, L; y vs. L2; y vs. L3 
and y vs. L4 using Excel. (Appendix 2 has instructions for using 
Excel for scientific graphing). Can you determine the functional 
relationship between these physically observable values from these 
graphs? Record your initial guess at the functional relationship. Look 
at how the different curves change and support your guess. 

Plot the logarithm of the Deflection versus the logarithm of the Extension 
using logarithmic graphing paper. Determine the functional relationship 
between these observables by calculating the slope of the log plot. 

How does the information determined from the log plot compare to your 
guess from graphing the Cartesian plots? 

  
Conclusion  

Discuss your findings. 
 
 

NOTE: Single cycle Log-Log paper on next page. 
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Experiment 3 
 

Acceleration 
 
 
 
Purpose 
 
The purpose of this experiment is to analyze the displacement, velocity and 
acceleration of an object in motion. 
 
Apparatus 
 
The apparatus used in this experiment consists of a computer based data 
acquisition system, a sonic position sensor, a car, a track, a suspended 
mass and a spring. The car’s wheels are designed such that its motion is 
essentially frictionless. The suspended mass is used to accelerate the car 
and the spring, once stretched, modifies this acceleration. 

The sonic sensor and computer acquisition system determines and 
records the car’s displacement at a rate of 20 samples per second. 
 
Theory 
 
Kinematics is the science of motion and is concerned with concepts such as 
displacement, velocity and acceleration independently from the cause of the 
motion. 

In order to describe objects in motion we must first unambiguously 
specify their position. The position of an object can only be specified relative 
to some reference point. Our choice of reference position usually defines 
the origin of the coordinate system. 
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A single-axis or one-dimensional, coordinate system is sufficient when 
the motion being investigated is constrained to a straight line. Convention 
defines the positive direction to the right of the origin and the negative to the 
left. It is sometimes convenient to choose positive and negative directions 
opposite to convention.  

 
 

 
Figure 3.1: Position is specified with respect to a graduated axis that extends 
infinitely in both directions. 
 

An object’s change in position from its initial position, 0x , to its final 

position, fx , is called the object’s displacement. Displacement along the 

x-axis is denoted x'  where  
 0xxx f � '  (3.1) 

 
(The symbol'  indicates a change in quantity.) Displacement is a vector 
quantity, meaning that it has both a magnitude and a direction. In the case 
of linear motion, the sign of the displacement gives the direction. 

A measure of the rate with which the position of an object is changing is 
called the object’s velocity. Velocity is also a vector quantity. The average 
velocity for a linear system is defined:  

 
t
xv

'
'

  (3.2) 

 
When we ask, “How fast is the object moving?”, the quantity that we are 
normally interested in is the object’s instantaneous velocity. The 
instantaneous velocity is calculated from the average velocity by letting the 
time interval become infinitesimally small:  
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t
xv

x '
'

 
o' 0

lim  (3.3) 

This equation tells us that the instantaneous velocity is the rate at which an 
object’s position is changing with time at a given instant. 

Equation (3.3) has experimental ramifications that must be kept in mind 
when attempting to determine the instantaneous velocity of an object. If we 
choose time intervals so small that they approach zero then the 
displacements over those periods also approach zero. This significantly 
increases the error in the displacement measurement. We compensate for 
this by choosing a reasonably small time interval such that the average 
velocity is a good approximation of the instantaneous velocity in the middle 
of the time interval. This is justified by the fact that, for constant 
acceleration, the average velocity over any time interval is exactly equal to 
the instantaneous velocity at the halfway point in the interval. The car is not 
undergoing constant acceleration in the experiment at hand; however, the 
acceleration is nearly constant over the time interval determined by the 
sampling rate.  

 
Procedure 
 

1. Ensure that the all of the strings attached to the car and the one 
attached to the spring are secure. 

2. Return the car to the back of the track. Ensure that the string 
between the car and the spring is not caught under the car and that 
it is free to extend. 

3. Restrain the car and attach the 20 g mass to the string that passes 
over the pulleys. 

4. Press the COLLECT button in the acquisition graphical user 
interface then release the car. The car must be released just after 
this button has been pressed. You should hear a clicking sound 
coming from the sonic sensor. 

5. Print the data sheet. Select the “Print Data Table” command from the 
“File” drop-down menu. Choose the appropriate number of copies in 
the “Print” dialogue box. Each student must submit a copy of the 
data with their report.  
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Analysis  
 
NOTE: You should check with the demonstrator about the 
permissibility of the use of Excel for graphing. Regardless of this, 
parts c & d must be done by hand. 

a. Plot a graph of position versus time. You should note that the data 
provided by the system may show negative values for the position of 
the car. You can use these values as provided or you can translate 
the data. Make a careful choice for the location of the axes. (The 
bottom left-hand corner of the graph need not correspond to )0,0( .) 
To translate, simply add the magnitude of the position at time 0 t  
to all position values. For example, say our first data point 
corresponds to 

01  t  

98.11 � d  

then, by adding 98.11  d  to all the position data we effectively 

translate the position so that it starts at zero. In either case, choose 
your vertical and horizontal scales such that the data extends over 
as much of the graph paper as possible.  

b. Plot a graph of the instantaneous velocity as a function of time. You 
will need to make a discrete approximation for the value of the 
derivative. A reasonably accurate approximation can be calculated 
using  
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tdtdtv  (3.4) 

It should be obvious from the formula that it is impossible to 
determine the velocity at the first and last time points being 
considered. 

c. Another method for determining the instantaneous velocity consists 
of drawing a tangent to the position versus time curve at a point of 
interest. The slope of this tangent gives us the value of the 
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instantaneous velocity. Choose three time points, one at the 
beginning, one in the middle and one at the end of your position 
versus time graph. Make sure that these points correspond to times 
for which you calculated the instantaneous velocity in part b. 
Graphically determine the instantaneous velocity at these points. 
Within experimental error, are the graphically determined values 
equal to the numerically derived ones? Would you expect them to be 
equal (within error)? If they are not the same, what reasons would 
there be to explain the difference? 

d. Instantaneous acceleration, a, can be determined from the velocity 
data using the same two methods that we used to generate the data 
for the instantaneous velocity. Inspect your velocity versus time 
graph and, without calculating acceleration values, sketch the 
qualitative manner in which the acceleration varies over the trip of 
the car. Label the time axis and indicate any regions where the 
acceleration is constant, increasing, decreasing, or zero.  

 
Conclusion  
 
What conclusions can be drawn about the nature of velocity and 
acceleration over the course of the car’s trip? What insights do the graphs 
reveal about the changes in velocity and acceleration? Explain. 

Describe the motion of the car using your graphs as guides. Support 
your observations of the changes in displacement, velocity and acceleration 
quantitatively.  
 
Questions  
 

1. Would it be correct to use your initial and final positions in 
equation (3.2) to determine the average velocity for the total trip of the 
car? Would it be correct to average the initial and final velocities to 
determine the average? Explain. Describe a graphical method for 
determining the average velocity of the whole trip using your position 
versus time graph. 

2. Suggest a graphical method for determine the total displacement of 
the car using your velocity versus time graph. 
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Experiment 4 
 

Ball Toss 
 
 
 
Purpose 
 
The purpose of this experiment is to measure the change in kinetic and 
potential energies as a ball moves in free fall. We will also explore how the 
total energy of the ball changes during the free fall.  

 
Apparatus 
 
The apparatus for this experiment consists of a computer data acquisition 
system, a sonic sensor, a soccer ball, a balance, an aluminum collar and a 
mounted wire frame.  

 
Theory 
 
The total mechanical energy, E, of an object is defined as the sum of the 
object’s kinetic, KE, and potential, PE, energies. The total energy remains 
constant as the object moves, provided that the net work done by external 
non-conservative forces is zero.  

Kinetic energy is the energy that an object has due to its motion. We can 
determine the kinetic energy of an object either from the total work done by 
conservative forces on the object or more simply, from the object’s velocity. 
The equation that relates the kinetic energy of an object to its velocity is  
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 2

2
1 mvKE   (4.1) 

where m is the mass of the object and v is the magnitude of its velocity.  
The retrievable energy stored in an object by virtue of the object’s 

position or configuration in relation to a force F(U) is called the Potential 
Energy. Most forms of potential energy are named for the force to which 
they are related. The force of interest during this experiment is that of 
gravitation. The gravitational potential energy is determined from the 
equation  
 mghPE   (4.2) 
 
where m is the mass of the object, g is the acceleration due to gravity, and h 
is the height of the object measured from the origin of our coordinate 
system. Since we can define the origin at any location, this tells us that the 
zero reference level of potential energy is arbitrary, that is, we are free to 
choose a convenient reference point for our experiment. In other words we 
are only able to measure changes in potential energy with respect to a 
convenient origin. 

 
Procedure  
 

1. Measure and record the mass of the ball. Use the aluminum ring to 
hold the ball on the balance. Measure the mass of the ring then of 
both the ball and ring.  

2. Hold the ball about 0.5 m directly above the Motion Detector. Have 
your partner click the COLLECT button on the computer acquisition 
interface.  

3. Toss the ball straight up above the detector to a height of about 
1.5 m above it. Use both hands and make sure to take your hands 
quickly out of the way after releasing the ball.  

4. Catch the ball before it falls onto the sensor.  

5. Verify that your distance versus time graph is parabolic in shape 
without spikes or flat regions. You may need to repeat the procedure 
until you get a good graph.  
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6. Print the data table, the distance versus time graph and the velocity 
versus time graph. 

 
Analysis  
 

a. Identify the portion of each graph where the ball just left your hands 
and was in free fall. Record this time as your initial starting point. 

b.  Find a time where the ball was moving downward, but a short time 
before it was caught. Record this time as the final time point. 

c. Plot Kinetic Energy, Potential Energy and Total Energy from the 
initial to final time on the same graph. Remember that the zero for 
Potential Energy is arbitrary. A convenient choice will minimize the 
amount of work you need to do. 

d. How well does this experiment demonstrate conservation of energy? 

e. Explain the shapes of the Kinetic Energy and Potential Energy 
graphs. 

f. Does the total energy remain constant within reasonable error? 
Should it? Why? If it does not, what other sources of energy are 
there or where could the missing energy have gone? 

  
Questions  

 
1. What would change in this experiment if we used a very light ball like 

a Nerf Ball? 

2. What would happen to the experimental results if you used the 
wrong mass for the ball? 
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Experiment 5 
 

The Pendulum 
 
 
 
Purpose  
 
The purpose of this experiment is to determine the acceleration due to 
gravity at Lakehead University by investigating the relationships between 
the period of a simple pendulum and its initial displacement, mass and 
length.  
 
Apparatus  
 
The apparatus for this experiment consists of a simple pendulum 
suspended from a bench stand, a photogate attached to a computer 
acquisition system and a set of masses. Pendulum lengths are measured 
with a metre stick, angular displacements with a protractor and timing is 
determined using the photogate.  
 
Theory: The Simple Pendulum  
 
A simple pendulum consists of a small mass m attached to a light 
inextensible string of length L. Periodic motion occurs when the mass is 
displaced from its equilibrium position and released. The pendulum 
oscillates along a circular arc. 
The displacement from equilibrium of the oscillating pendulum bob can be 
described by the angle T  as shown in Figure 5.1. The length of the 
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pendulum L and the distance travelled along the arc s are related to the 
angle by 

 
L
s

 T  (5.1) 

 
 

Figure 5.1: The Simple Pendulum 
 
where T  is measured in radians. 

The forces acting on the pendulum bob are the tension in the string T
&

 
and the force of gravity gm&

. The component of the gravitational force 
tangential to the arc at any point, )sin(Tgm&

, provides the restoring force for 
the pendulum. From Newton’s Second Law:  
 
 Tmamg  )sin(T  (5.2) 
 
where Ta is the tangential acceleration. It can be shown that for small 
displacements TT |)sin( . Using this approximation, equation (5.2) 
becomes  

 
L
gs

dt
sdaT

�
  2

2

 (5.3) 

 
Equation 5.3 is the equation of motion for a simple harmonic oscillator. A 

solution for this differential equation is  
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 )cos(0 tss Z  (5.4) 
 
where  

 
L
g

 Z  (5.5) 

is the angular frequency. The angular frequency is related to the period of 
oscillation by:  

 
Z
S2

 T  (5.6) 

Hence for the pendulum  

 
g
LT S2  (5.7) 

Procedure  
 
You will notice that the pendulum is attached to the horizontal bar using a 
two-point mount. This helps to keep the pendulum swinging in a straight line 
and minimizes the chance of the pendulum hitting the photogate. The length 
of the pendulum is adjusted by loosening the setscrew on the horizontal bar 
and pulling the string. The length of the pendulum is the vertical distance 
from the midpoint between the strings to centre of mass of the bob. The 
centre of mass is located at the middle of the cylindrical part of the mass. 

A pendulum possesses three adjustable parameters: initial 
displacement, mass and length. Equation (5.7) indicates that as long as the 
angle is small so that TT |)sin( , then the period should not depend on the 
initial displacement or the mass of the pendulum bob. The first two 
experiments we perform investigate the accuracy if this conclusion. Our final 
experiment investigates the dependence of the period on the length of the 
pendulum. 

 
A) Basic Instructions 

1. Ensure that the pendulum is set to the required length and that the 
bob can swing through the photogate without hitting it. 

2. Displace the pendulum and let it swing for at least two or three 
passes through the photogate. 
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3. Click the START button on the interface and allow the system to 
acquire the period of oscillation for at least 6 points.  

4. Click on the STATISTICS button and record the mean value for the 
period in your data table.  

B) Mass Dependence  

You will use 3 different masses to determine if period is affected by 
changing the mass. Set the pendulum to about 1 metre in length. Use an 
initial displacement of 10 degrees for each trial. You need to ensure that 
each trial is performed using the same initial displacement. Determine the 
period using the same process as outlined in part A. Record your results in 
a data table.  

C) Dependence on Initial Displacement  

Determine the period for 5 initial displacements ranging from just enough to 
clear the photogate to about 30 degrees. Use the same length as you had in 
part B. Record your results in a data table. 

D) Length Dependence  

Equation (5.7) developed in the theory section shows that the pendulum’s 
period depends on its length. Hang the 200 g mass from the string. 
Determine the period for 6 different lengths of the pendulum ranging from 
0.5 to 1.0 metre. Use an initial displacement of about 10 degrees.  

 
Analysis  
 
Plot a graph of the period squared versus length using Excel. Use the 
Scatter Plot plot type and add a linear trend line with intercept 0 to the plot. 
Determine the slope of the trend line. Excel will display the equation for the 
trend line on the graph. Estimate the acceleration due to gravity from the 
slope of your trend line. 

The actual value of the acceleration due to gravity at a given location 
depends strongly on the location’s latitude and altitude above sea level. This 
value is easily determined using an equation that can be found in many 
sources. The CRC Handbook of Physics and Chemistry available in the 
reference section of the library or an online search are two possible 
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sources. Thunder Bay is located at a latitude of 48°22’30” given in the 
standard form of degrees, minutes, and seconds. You will need to convert 
these numbers to their decimal equivalent in order to use the equation. 
Thunder Bay’s elevation is 199 m above sea level.  

Compare your experimental value for the acceleration with the accepted 
value. Account for any discrepancies between the experimental and 
calculated value for the acceleration due to gravity.  
 
Conclusion  

 
Our analysis suggests that the period of the pendulum is independent of 
both mass and initial displacement. Does your data in parts B and C support 
this? Explain.  

Does the accepted value for the acceleration due to gravity agree, within 
error, with your experimental determination? Discuss the accuracy and 
precision of your result. How could accuracy and precision be improved? 
 
Questions 
 

 1. Check the validity of the approximation TT |)sin(  for angles 
ș=1°,2°,…,10°. Recall that this approximation is valid only for angles in 
radians.  
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Experiment 6 
 

Momentum, Energy, and Collisions 
 
 
 
Purpose 

 
The purpose of this experiment is to observe collisions between two 

carts and to test for the conservation of momentum. You will also measure 
the energy changes during different types of collisions and classify the 
collisions as elastic, inelastic, or completely inelastic.  

 
Apparatus  

 
The apparatus to be used for the experiment includes a computer data 

acquisition system, a 1 metre track, two carts, two sonic sensors and a 
balance.  

 
Theory  

 
Momentum is transferred between objects involved in a collision. The total 
linear momentum of the system of colliding objects is conserved provided 
that the sum of any external forces acting upon the system is zero. 
Collisions are classified according to whether the total kinetic energy 
changes during the collision. 
 

A) Elastic Collision: This is a collision in which the total kinetic energy 
of the system after the collision is the same as it was before. 
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B) Inelastic Collision: In this type of collision, the total kinetic energy 
of the system is different before and after the collision. 

C) Completely Inelastic Collision: This is an inelastic collision in 
which the colliding bodies stick together at impact.  

 
Procedure  
 
Measure and record the masses of your carts. You will be using three 
different configurations of the apparatus for this experiment, one for each 
type of collision being investigated. You will need to measure the mass of 
the carts at each station. 

Place one of the carts at about the centre of the track. To create the 
collision you will launch the other cart from one end of the track towards the 
cart at the middle. Try to launch the cart with just enough force that the 
collision occurs without the carts crashing into the sensors. Carts should be 
caught before they hit the sensors.  
 
I) Magnetic Bumpers  

a. Position the carts so that their magnetic bumpers face one another.  

b. Have one partner click the COLLECT button on the interface while 
the other launches the other cart. Keep hands out of the way of the 
sensors after the launch. This will help to minimize errors.  

c. You will see a position vs. time graph and a velocity vs. time graph 
on the computer screen. You can use the system to measure the 
average velocity for each cart before and after the collision. Drag the 
cursor across the velocity for the time interval of interest. Click on 
the Statistics button and a dialog box containing the required 
average velocity will appear. Record the average velocity for each 
cart, before and after the collision.  

d. Perform a second trial recording the required information.  

II) Velcro Bumpers 

a. Position the carts so that their Velcro bumpers face each other.  

b. Place one of the carts at about the middle of the track.  
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c. Press COLLECT on the interface and launch the other cart from one 
end of the track.  

d. Measure the before and after cart average velocities using the 
Statistics button and record them in your data table.  

e. Perform a second trial recording the required information.  

III) Velcro to Magnetic Bumpers  
a. Position the carts so that a Velcro bumper faces a magnetic bumper.  

b. Place one of the carts at about the middle of the track.  

c. Press COLLECT and launch the other cart from one end of the track. 
Ensure that opposite bumper types will participate in the collision.  

d. Measure the before and after average cart velocities and record 
them.  

e. Perform a second trial recording the required information.  

 
Weigh each cart at each station and record these with the 
pertinent velocity data.  
 
Analysis  
 
For each run:  

1) Determine and record the momentum of each cart before and after 
the collision and the total momentum of the system before and after 
the collision. Calculate and record the ratio of the before and after 
total momenta.  

2) Determine and record the kinetic energy for each cart before and 
after the collision and the total kinetic energy both before and after 
the collision. Calculate and record the ratio of the total kinetic energy 
before the collision to the total kinetic energy after the collision. 

 
Conclusion  
 
Discuss the conservation of momentum for each of the six runs. Discuss the 
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conservation of energy for each of the six runs. Classify each collision as 
elastic, inelastic or completely inelastic. 
 
 



 

 59

Experiment 7 
 

Moment of Inertia 
 
 
 
Purpose 
 
The purpose of this experiment is to measure the moments of inertia of a 
number of objects about given axes and compare these with theoretical 
values computed from the masses and dimensions of the objects.  
 
 
Apparatus  
 

 
Figure 7.1: Experimental Apparatus 
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The apparatus used in this experiment consists of a rotating support 
connected to a system of pulleys, mounted on a table clamp and bar, by a 
length f thread. A variety of masses are suspended on the free end of the 
thread to provide the force required to rotate the support. Measuring devices 
used in this experiment include a computer-based stopwatch, vernier 
caliper, metre stick and a laboratory balance.  

  
Theory  
 
When a body is of a simple geometric form, its moment of inertia about an 
axis can be computed from its mass and dimensions. Irregular objects 
require a numerical determination of moments of inertia.  

The Law of Conservation of Energy can be used to determine the 
moment of inertia of a body that can be placed on the experimental 
apparatus. The potential energy, mgh associated with the hanging mass m, 
except for a small amount, ǻmgh, used to compensate for friction, is 
converted to the total kinetic energy of the system as the mass falls through 
a height h. The total kinetic energy is simply the sum of the translational 
kinetic energy, ½ 2mv , of the downward moving mass and the rotational 

kinetic energy, ½ 2ZmI  of the rotating system. Conservation of energy 
requires that  

 22

2
1

2
1)( finalsystemfinalinitial Imvghmm Z� '�  (7.1) 

where systemI is the moment of inertia, Ȧ is the angular velocity acquired 

by the rotating object, and m is the mass of the suspended weight.  
The weight experiences a constant acceleration thus its final velocity is 

t
hvv final

22    and the final angular speed of the object is 
r

v final
final  Z ,  

where r is the radius of the drum on which the string is wound. Substitution 
of these expressions into equation (7.1) gives  
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Solving equation (7.2) for I yields  
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I is the moment of the inertia of the system comprising the object and the 
cradle. If CI  is the moment of inertia of the cradle alone, then the moment 

of inertia of the object, OI , is given by 
 
 CO III �  (7.4) 
 
Procedure  
 
The apparatus should be set up as shown in Figure 7.1. Ensure that the 
lower pulley is positioned such that the string is horizontal as it unwinds 
from the drum. The position of the upper pulley system should be such that 
the string is vertical as it comes off of the lower pulley and should allow 
about a 1m drop to the floor. Some care must be taken when rewinding the 
string onto the drum. Ensure that the string is wound evenly and that it does 
not cross over itself. See your lab instructor if you are having difficulty with 
the setup.  
 
A: Moment of Inertia of the Cradle  

Compensate for frictional forces. Use the hook and washers to 
determine the mass required to produce a slow uniform motion. Begin 
by hanging the hook and a single washer on the free end of the string. 
Continue adding washers until the hanging assembly just begins to drop. 
Determine the mass of the hook and washer combination using the 
laboratory balance. Record this mass as m' . Remove the hook and 
washers from the string and add a weight large enough to produce a 
reasonable acceleration. Remember, the time of descent must be 
determined using the computer-based stopwatch. If the mass that you 
add is very large, it will drop very quickly and will be difficult to time 
accurately. Record the mass of the weight, the time it takes for the 
weight to touch the floor when dropped from rest and the initial height of 
the weight. (Measure the distance from the floor to the bottom of the 
hanging mass) Use 3 different masses and make two sets of 
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measurements for each. Calculate and record the moment of inertia for 
each trial.  

B: Moment of Inertia of Regular Geometric Objects  
You have been provided with 2 regular geometric objects: a cylindrical 
ring and a cylindrical solid. The procedure to determine the moment of 
inertia for each of these is the same as that used for the cradle alone. 
Energy lost to friction is dependent on the mass of the rotating object. 
You must therefore make a new determination of the mass, m' , for 
each change in the configuration of the system. Determine the moment 
of inertia of one of the objects. Perform the experiment using 3 different 
weights. Complete 2 trials for each weight.  

C: Experiment vs. Theory  
Compare your experimentally determined moments of inertia for the 
regular geometric objects with those predicted theoretically. (The 
equations are provided at the end of this experiment. Additional 
measurements may be required.)  

 
Conclusion  
 
Discuss your results. Pay attention to any discrepancies between 
experimental and theoretical values. Describe the importance of the 
moment of inertia of a rotating body. What is it a measure of? 

 
Figure 7.2: Moments of Inertia for some Regular Objects 



 

 63

Experiment 8 
 

Standing Waves 
 
 
 
Purpose 
 

The purpose of this experiment is to determine the wave speed on a 
stretched string and to investigate the relationship between string tension 
and the speed of the wave. 
 
  
Apparatus  
 

The apparatus for this experiment consists of a mechanical vibrator 
connected to a variable frequency sine wave generator. A pulley assembly 
and a set of masses is used to vary the tension in an elastic string. A metre 
stick is used to measure length and a balance is used to measure the mass 
of a sample of the string. 
  
 
Theory  
 

A wave is produced in an elastic medium when a periodic force is 
applied to it. A transverse wave is created in a string under tension when 
such a force is applied perpendicular to the direction of propagation. The 
wavelength Ȝ of the wave is the distance between any two consecutive 
crests or troughs of a traveling wave. The frequency f of the wave is the 
number of complete oscillations made by the string per unit time. The speed 
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v at which the wave travels is related to the frequency and wavelength by 
the formula  
 
 Ofv   (8.1) 
 

As is true for all mechanical waves, the speed of the transverse wave 
depends on the properties of the medium through which it travels. For a 
wave on a stretched string, the speed of the wave depends on the linear 
density µ of the string and the tension T in the string as follows 

 
P
Tv   (8.2) 

When two waves of the same frequency, amplitude and speed travel in 
opposite directions on the same string, interference produces a standing 
wave pattern. The standing wave wavelength and string length L are related 
by 

 
2
OnL    (8.3) 

where n is an integer that represents the number of antinodes . 
The frequencies at which standing waves are produced are called 

resonant frequencies and are given by the formula 

 
L

nvf
2

  (8.4) 

  

Figure 8.1: Standing Waves 
 

The above assumes that the linear density of the string is unaffected by 
the tension. For the elastic string that you will use, this is not a good 
assumption. 
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The linear density can then be written as 
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P  (8.5) 

where 0/0 Lm P  and 0L  is the length without tension. Hooke’s law relates 

the tension to the stretch via the spring constant k. 

 LkT '  (8.6) 
 
Combining equations (8.2) and (8.5) and (8.6) we get 
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This is the equation of a straight line if we plot it as 
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Procedure 
A) Wave Speed on a Stretched String 

1. Provide tension in the string using a 400 g mass. 

2. Carefully adjust the frequency on the function generator until a clear 
3-antinode pattern occurs in the string. The antinodes will attain 
maximum amplitude at the correct frequency. It is advisable to 
increase the frequency until the antinodes begin to decrease in 
amplitude then decrease the frequency to get the maximum 
amplitude. Also, be careful not to overdrive the amplitude setting. 

3. Measure the wavelength of the standing wave. This can be done by 
measuring the length, L, of the vibrating portion of the string (from 
the vibrating reed to the point where the string first touches the lower 
pulley) and using equation (8.3). Record both the wavelength and 
frequency in your data table. 

4. Repeat steps 2 and 3 for the next four resonant frequencies. 
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5. Determine and record the length and mass of the unstretched 
sample string provided with the balance 

B) Relationship between Tension and Wave Speed 

1. Begin with a 400 g mass attached to the string. Determine the 
frequency at which a 3-antinode standing wave pattern occurs. 
Measure the wavelength of the standing wave. Record the mass, 
frequency, wavelength in your data table. 

2. Repeat step one while varying the tension in the string in 50 g 
increments up to a total mass of 600 g. Set the tension in the string 
in the same way for each weight. 

3. Measure the change in string length between the 600 g and the 
400 g weights on the portion of string where the weights are 
attached. 

 
Analysis 
A) Wave Speed 

a. Plot a graph of frequency f versus inverse wavelength O/1  and 
determine the wave speed from the slope of the graph. 

b. From the measurements of string mass and unstretched length 
determine the linear density, 0P , of the string and use this and the 
tension produced by the 400 g mass to determine the wave speed 
using equation (8.2). Note that this may differ from the speed 
determined in point (a) above. 

B) Relationship between Tension and Wave Speed 

a. Calculate the tension and the wave speed using your experimental 
data. 

b. Plot a graph of Tv /2  versus T and determine both the slope and 
intercept. 

c. Calculate 0P from the intercept and k from the slope (see equation 

8.8) and compare to the direct measurement of 0P  from part (A) and 
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k from equation (8.6). In calculating k from eq.(8.6) use the 
difference in tension between the 400 g and 600 g masses. 

 
Conclusion 
 
Compare the wave speeds determined from your experiment in part A. 
Account for any differences. In part B does the theory correspond to the 
experiment? If not, why not? 
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Experiment 9  
 

Electric Fields 
 
 
Purpose 
 
The purpose of this experiment is to draw equipotential lines and electric 
field lines in the region between charged conductors of various shapes. 
 
 
Apparatus 
 
The apparatus used in this experiment consists of a baseboard on which 
low conductivity paper with painted electrodes is positioned. A battery is 
used to establish a potential difference between the electrodes. Two probes 
connected to a voltmeter are used to map equipotential lines in the region 
between the conductors. 
 
 
Theory 
 
The interaction force between two point charges is determined by 
Coulomb’s well-known law. This law, however, does not describe the 
interaction itself. A simple direct interaction model cannot explain why a 
change in the position of one charge does not instantaneously affect the 
other charge. 

This indirect interaction can be explained by the concept of electric field. 
In this model, every charge produces an electric field in the surrounding 
space and it is this field that interacts with other charges. A change in the 
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position of a charge results in a disturbance in the electric field that 
propagates as an electromagnetic pulse travelling at the speed of light. At 
any point in space the electric field is defined as the electric force on a 
charge q0 divided by the magnitude of that charge: 

 
0q

FE
&

&
  (9.1) 

Electric field lines, or lines of force, are a set of lines that point in the 
direction of the field with the density of the lines proportional to the field 
intensity. The electric field lines originate on positive charges and terminate 
on negative charges. The solid lines in Figure 9.1 below represent the 
electric field lines due to oppositely charged parallel plates. 

 
Figure 9.1: Electric Field Lines and Equipotential Lines 

 
The relationship between the electric field and electric potential difference 
provides a method of mapping the electric field. The potential difference 
between two points in an electric field is given by 

 
0q
WVVV if

�
 � '  (9.2) 

where W is the work done by the field in moving a positive test charge q0 

from an initial position to a final position. Along an equipotential surface, the 
change in potential is zero; therefore, the electric field has no components 
tangential to the equipotential surface. Thus, at any point, the electric field is 
perpendicular to the equipotential surface or, in two dimensions, the electric 
field lines are perpendicular to equipotential lines as in Figure 9.1. In this 
experiment, points which are at the same potential will be located, 
equipotential lines drawn and the corresponding electric field lines sketched. 
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Figure 9.2: Experimental Apparatus 

 
Procedure 
 
1. Set up the apparatus as shown in Figure 9.2. 

2. Position the low conductivity sheet with painted electrodes on the board 
and fasten it using the washers and fasteners. 

3. Use the voltmeter to ensure good contacts exist between the terminals 
and electrodes then measure the maximum potential difference between 
the electrodes. 

4. Map at least 7 equipotential lines between the electrodes. Some 
electrode configurations will require more than the minimum number of 
equipotential lines in order to get a good representation of the electric 
field. Mapping is accomplished by positioning the hand-held probe at 
points where the potential remains constant. The grid on the low-
conductivity paper corresponds to the grid on the electrode printouts. 
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Use this grid to assist you in mapping the equipotential lines to the print 
out. 

5. Record the potential of each line that you map and the potential at each 
electrode on your printout. 

6. Sketch the corresponding field lines, ensuring that they are 
perpendicular to the equipotentials and are directed from (+) to (-). 

7. Repeat this procedure for the following electrode arrangements: 

a. Parallel Plates 

b. Two Point Charges 

c. Parallel Plates with a Central Circular Conductor 

d. One of the other two arrangements. 

 
Conclusion 
 

Discuss the electric field for each electrode arrangement investigated. 
Use the density of the lines to determine where the electric field is the 
most/least intense, constant or zero. Do the lines of force point in the 
direction of increasing or decreasing potential? At what angle do the electric 
field lines meet the conductors? What is the electric field and electric 
potential inside the conductors? 

 
Questions 
 

1. How much work is done by the uniform electric field in moving an 
electron from the negative plate to the positive plate of the parallel plate 
conductors in this experiment? State your answer in both eV and joules. 

2. If an electron was released from rest from the negative plate in vacuum, 
what would its speed be just before striking the positive plate? NOTE: 1 eV 
is the energy acquired by an electron when it is accelerated through a 
potential difference of 1 V.  
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Experiment 10  
 

Electric Meters & Ohm’s Law 
 
 
 
Purpose 
 
In this experiment you will first study the galvanometer, which is a current 
measuring device, and investigate how the galvanometer can be converted 
into an ammeter and a voltmeter. You will also investigate the relationship 
between current and voltage for a number of conductors.  
 
Apparatus  
 
A galvanometer, several fixed resistors, a 10 kȍ decade resistor, a 
voltmeter, 1.5 V and 6 V batteries, a switch, two test conductors, a terminal 
board and connecting leads are used in the circuits described below.  
 
Theory and Procedure  
 
Part A: The Galvanometer  
 
The galvanometer is a current sensitive device which may be used for 
detection of small currents. The type used in this experiment (see Figure 
10.1) consists of a coil of wire mounted on pivots over a soft iron core. 
When a current is passed through the coil, the magnetic field created in the 
coil interacts with the uniform radial magnetic field of the permanent 
magnet. This produces a torque on the coil which is proportional to the 
current. This torque rotates the coil until it is balanced by the torque created 
in the spiral stabilizing spring. An indicating needle on the coil suspension 
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makes a clearly visible display of this rotation. Since the restoring spring 
torque is proportional to the angle or rotation, the deflection of the needle is 
proportional to the current and the galvanometer has a linear scale. 
  

 
Figure 10.1: The Galvanometer 

 
The galvanometer you are using has a bipolar scale that runs from -50 

to +50 in arbitrary units. You are first to determine the current sensitivity of 
this device. Place the galvanometer in series with a 1.5 V battery and a 
10 kȍ decade resistance box set at maximum resistance. Now reduce the 
resistance R of the decade box until the meter reads full scale. If we assume 
the resistance of the galvanometer Rg is much less than R, then the current 
in the circuit is RVI Bg / . Here VB is the voltage of the battery which 

should be measured with the multimeter while in the circuit.  
Since the galvanometer as a current measuring device is placed in 

series in a circuit it should have the smallest resistance possible to minimize 
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its effect on the circuit. One could determine Rg by measuring the voltage 
across the galvanometer when in the circuit described above. However, this 
voltage would be quite small so we will use a different method. Replace the 
decade resistor in the circuit you have just constructed with a fixed resistor 
of the same value that gave full scale deflection of the galvanometer. If a 
shunt resistor Rsh equal to Rg were then placed in parallel with the 
galvanometer, half the current would pass through each. Place the decade 
resistor in parallel with the galvanometer as shown in Figure 10.2. Begin 
with Rsh at a maximum and decrease until the meter deflection is one-half full 
scale. Then gsh RR  .  

 

 
 

Figure 10.2: Galvanometer with parallel shunt resistance 
 
Part B: The Ammeter  
 

It is relatively simple to convert a galvanometer to an ammeter. In fact, 
you have already seen how to do this while investigating the resistance of 
the galvanometer. The parallel shunt in that case reduced the sensitivity of 
the galvanometer by one-half. The circuit within the dashed lines in Figure 
10.2 is an ammeter. Use Kirchoff’s rules to determine what value of Rsh 
would result in full scale deflection of the galvanometer for a total current of 
5 mA. Construct a 5 mA ammeter by placing a resistor of this value across 
the terminals of the galvanometer. Set up a circuit which will provide 5 mA 
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and test your new ammeter. Calculate the effective resistance of this 
ammeter.  

 
Part C: The Voltmeter  
 
The basic D.C. voltmeter consists simply of a galvanometer in series with a 
large resistor RV as shown in Figure 10.3. A voltmeter is placed in parallel 
with the voltage V that is to be measured. Thus 
 
 )( gVg RRIV �  

 
gV

g RR
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Determine the resistance RV necessary to modify your galvanometer into a  

 
Figure 10.3: The Voltmeter 

 
10 V full-scale voltmeter. Construct such a voltmeter using a fixed 

resistor for RV. Test by measuring the voltages of a 1.5 V and 6 V battery. 
Construct the circuit shown in Figure 10.4 with a 6 V battery and with R1 and 
R2 of approximately 100 ȍ and 360 ȍ. Using the voltmeter you have 
constructed, measure V1 and V2, and the emf of the battery. Repeat this 
experiment with R1 = 10 kȍ and R2 = 20 kȍ. Is 21 VVVB � for both cases? In 
explaining any discrepancies consider the internal resistance of the 
voltmeter. 
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Figure 10.4: Test Circuit 

 
Part D: Current-Voltage Relationships (Ohm’s Law)  
 
The resistance R of a conductor is defined as the ratio of the voltage V 
across the conductor to the current I through the conductor, that is  

 
I
VR   (10.1)  

The metric unit of resistance, therefore, is the volt/ampere which is known 
as the ohm and given the symbol ȍ. 

Georg Simon Ohm (1787-1854) first investigated the I vs. V relationship 
for a large number of materials. He discovered that for many conductors R is 
a constant (the I-V curve is a straight line passing through the origin). A 
conductor for which R is constant is said to obey Ohm’s Law or to be an 
ohmic conductor. A conductor for which R is not constant is called 
non-ohmic. Notice that in either case equation (10.1) still remains the 
definition of resistance. Sometimes, for non-ohmic conductors, the slope of 
the V versus I curve or differential resistance dV/dI is of more interest than 
the actual value of the resistance V/I. It is possible for the differential 
resistance to be negative, but the resistance never is. For an ohmic 
conductor, the differential resistance is the same as the resistance. In this 
experiment you are to investigate the I-V curve for two conductors: a low 
power light bulb and a carbon resistor. Construct the circuit shown in Figure 
10.5 using the 6 volt battery. Measure the voltage drop across the two test 
conductors over the full range of the decade box settings. Take at least ten 
well spaced readings for each sample. Use the commercial multimeter to 
perform your measurements. Calculate the current through the load and its 



EXPERIMENT 10. ELECTRIC METERS & OHM’S LAW  
 

 

77

resistance for each reading. Use a well labeled table! From your data plot 
the I-V curve (current versus  
  
 

 
 

Figure 10.5: I-V Test Circuit 
 
voltage) as well as the load resistance versus the current. For any ohmic 
device, determine the resistance from the I-V curve slope and compare this 
to the R vs. I plot. Discuss your results and explain any discrepancies seen. 
The results for both conductors should be plotted on the same two graphs.  
 
 
Questions  
 

1. How should two 100 resistors be connected so that the equivalent 
resistance is greater than the individual resistances? How do you 
connect them to make it less? Justify your answers with calculations. 

2. Why is it advisable to connect car headlights in parallel rather than in 
series?  
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Experiment 11  
  

AC Circuits 
 
 
 
Purpose  
 
The purpose of this experiment is to investigate the dependence of 
capacitive and inductive reactance on frequency and to demonstrate that 
the voltages across resistive and reactive circuit elements add as phasors 
rather than as scalars.  
 
Apparatus  
 
The apparatus for this experiment includes a function generator, an A.C. 
voltmeter, a 1.2 kȍ resistor, a 68 nF capacitor, a 100 mH inductor, and a 
circuit board. The tolerance of the resistor is 5 % (gold band) whereas the 
other two can be assumed to be 10 %.  
 
Theory  
 
A capacitor consists of two conducting plates separated by an insulator 
called a dielectric. The unit used to measure capacitance is the farad, where 
a capacitor of one farad holds a charge of one coulomb when charged to a 
voltage of one volt. The most commonly used units are actually the 
microfarad and the picofarad. 

A capacitor in a D.C. circuit acts almost like a break in the circuit. Once it 
is charged, no current then flows. In an A.C., circuit the situation is different. 
The capacitor charges in one direction and when the voltage source 
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changes polarity, the capacitor discharges and then charges in the opposite 
direction. Thus, an alternating current will flow in a circuit having capacity. 

Just as the current in a D.C. circuit depends on the resistance in the 
circuit, the current in an A.C. circuit depends on the capacitance. In a D.C. 
circuit, the resistance as found from Ohm’s Law is given by the ratio of 
voltage to current. For an alternating voltage VC applied across a capacitor, 
an alternating current I will flow. The quantity associated with the 
capacitance and analogous to resistance is called the capacitive reactance 
XC and is given by the ratio VC /I. If VC is in volts and I in amperes, then XC 
will be in ohms. In this experiment, the dependence of reactance on 
frequency will be examined. It can be shown that  

 
C

XC Z
1

  (11.1) 

(11.1)  
where C is the capacitance and is determined by the geometry of the 

capacitor and the materials of which it is constructed and is usually a 
constant for a particular capacitor. The angular frequency Ȧ (in radians per 
second) is given by fSZ 2  where f is the frequency of the applied voltage 
(in Hz). 

An inductor is usually made from a coil of wire. Its operation follows 
Faraday’s Law of Induction. According to this law an inductor develops a 
voltage that opposes any change in current through the device. The current 
is constantly changing in an A.C. circuit. Faraday’s Law can be used to 
show that the voltage across the inductor is given by IXL where XL is called 
the inductive reactance. It is directly related to the angular frequency of the 
current through the equation 

 LX L Z  (11.2) 
where L is the inductance of the device. 
 
Procedure  
 
1. Connect the experimental circuit as shown in Figure 11.1. This diagram 

shows the circuit with a capacitor. The same circuit is used for the 
inductor by replacing the capacitor with the inductor. 



EXPERIMENT 11 . AC CIRCUITS 
 

 

80

2. Measure the voltage across the resistor, the capacitor and the function 
generator for at least 9 frequencies from 400 Hz to 10 kHz. Record the 
frequencies and the voltages in your data table. 

3. Repeat for the inductor circuit and use the multimeter to measure the 
resistance of the inductor. 

 
Figure 11.1: Experimental Circuit 

 
Analysis  
 

A) Calculate and record 22
CR VV � , 22

LR VV �  and the percentage 

errors for each frequency explored. 

B) Calculate and record XC and XL at each frequency. Note that  

 
R

XX

V
RV

I
VX    (11.3) 

C) Plot graphs of XC versus Z/1  and XL versus Ȧ. Determine the 
capacitance and inductance from the slopes of the graphs.  

 
Conclusion  
 

For each circuit and at each frequency, compare and contrast the 
square root of the sum of the squares of the voltage drops to the output 
voltage at the function generator. Use a logically constructed table to 
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facilitate this comparison. Discuss your findings. What does the result 
indicate about voltages in inductive and capacitive A.C. circuits? 

Compare your experimentally determined capacitance and inductance to 
the given values for them. Account for any significant differences. What is 
the stated tolerances for the circuit elements? What is the significance of the 
inductor resistance?  
 
Question 
 
You will see that the percentage error calculated for the measured total 
voltage compared to the phasor calculation is much greater for the inductor 
circuit. What is the source of this error? Your explanation must also explain 
the frequency dependence of this error. There is a specific logical 
explanation for this. DO NOT say that it is a reading error! 
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Experiment 12  
 

Thin Lenses 
 
 
 
Purpose  
The purpose of this experiment is to verify the thin lens equation and to 
determine the focal length of an optical thin lens.  
 
Apparatus  
 
The apparatus used in this experiment consists of an optical bench, a light 
source with built-in object, a thin lens, a screen and a small plastic scale.  
 
Theory  
 
A thin lens is an optical system with two refracting surfaces that are close 
enough to each other that we can neglect their separation. Light rays 
passing through a thin lens are refracted, changing their direction of 
propagation. 

A converging thin lens is one that will focus a beam of parallel rays to a 
single point called the focal point of the lens. A common form of a 
converging lens is a double convex lens that consists of two convex curved 
surfaces having the same curvature 

The distance from the focal point to the centre of the lens is called the 
focal length of the lens. Converging lenses are often used to form images of  
extended objects. 
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Figure 12.1: Rays from infinity converge at the focal point. 

 
Consider the diagram in Figure 12.2. The distance from the object, of 

height y, to the centre of the lens is denoted with the letter p. The image, 
formed by the lens is located a distance q away and has a height y’.  
 

 
Figure 12.2: Image formation by a thin lens. 

 
The ray parallel to the optic axis will pass through the focal point F after 

refraction through the lens. The ray that passes through the centre of the 
lens is undeflected. The intersection of the two rays defines the image 
height y’.  

 
q
y

p
y c�
  )tan(I  (12.1) 
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The quantity on the right hand side of equation (12.1) is negative because y’ 
lies below the optical axis and thus is a negative quantity, in accordance 
with our sign convention. We can also write  

 
fq

y
f
y

�
c�

  )tan(T  (12.2) 

The ratio of the height of the image to the height of the object is called 
the magnification and is denoted by the symbol M. From equations (12.1) 
and (12.2) we get  

 
f
q

p
q

y
yM � 

�
 
c

 1  (12.3)  

We can now derive the thin lens equation by dividing by q and rearranging 
the last two terms in equation (12.3)  

 
fqp
111

 �  (12.4) 

 
Procedure  
 

1. Your light source has the object built into it. The light bulb aligns with 
the pointer on the carriage and is situated in the centre of the 
housing. The object is stamped into one face of the housing. Be 
careful to take this into account when determining the position of the 
object on the scale. 

2. Determine and record the location of the lens and screen. Both of 
these align with the pointer of their carriage. 

3. The image height can be determined on the scale printed on the 
screen and the height of the object is fixed and can be measured 
with a small plastic scale. 

4. Perform a minimum of 10 measurements. Use a fixed object location 
and move the lens to a new location for each one. Ensure that you 
obtain a good range of data and avoid data that clumps into a small 
area of your graph. Record all measurements in a clearly written 
table.  
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Analysis  
 

A) Use the experimental data to determine the object distance, p, the 
image distance, q, and the magnification, M, for each trial and record 
the results in a new table. Calculate 1/p and 1/q in the same table.  

B) Plot a graph of 1/q versus 1/p and determine the slope and both 
intercepts.  

C) Plot the magnification, M or -M versus q and determine this graph’s 
slope and intercepts.  

 
Conclusion  
 
What is the significance of the slope of the graph in part B of the analysis? 
From the intercepts calculate the focal length of the lens.  

Determine the slope and both intercepts of the part C graph as well. You 
can get two more values for the focal length. Compare all four values of the 
focal length that you have calculated from both graphs. If necessary rewrite 
the equations into the form of a straight line in your theory section to help 
with your analysis.  
 
Questions  
 

1. In this experiment we considered only real objects and real images 
and thus our data lies in the first quadrant of the cartesian plane. It is 
also possible to have virtual images or even virtual objects. Sketch 
the complete 1/q versus 1/p curve for all four quadrants.  

2. Sketch the q versus p curve and show the asymptotes. 
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Appendix 1 
 

Graphing with Excel 
 
 
To open Excel, choose the stylized X icon from the quick launch bar at the 
bottom of the desktop. You can also access the program through Finder by 
choosing the Applications option from the Go menu and navigating to the 
Microsoft Office folder. You are presented with a Document Type option 
once Excel opens. The default is Blank Documents/Excel Workbook. This is 
the type of spreadsheet that you need so choose OK.  
 

 
 

Figure 1.1: Screenshot 1 
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You will need to type your data to be graphed into the spreadsheet that 
opens. Your data needs to be input in column format. It is recommended, 
though not necessary to place all of the independent variable data into the 
leftmost column. You can then input the dependent variable data into the 
subsequent columns to the right. It is a good idea to place your raw data 
into the spreadsheet. You can then configure the spreadsheet to perform 
any calculations for you.  

We provide an example using student-acquired data from a previous 
form of the non-uniform acceleration experiment. NOTE: The experiment 
the data is from is very different from the one that you will be 
performing.  

It is useful to use column labels to identify your data. To create column 
labels, begin by selecting the cells that will contain the labels, then select 
Name->Label. . . from the Insert menu. This brings up a dialog box that 
should have the selected cells listed. Click Add then OK. You can now type 
in the column headings and input your data below them. 

  

 
Figure 1.2: Screenshot 2 
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Figure 1.3: Dialogue Box 
 

It is possible to have Excel perform calculations with your data. The 
experiment we are using as an example requires velocity be determined 
from displacement and time data. The time derivatives that give 
instantaneous velocity and acceleration are approximated using a finite 
approximation known as Euler's Method. To input the equation, click on the 
cell that will hold the result the type the equal sign and the equation. Cells 
are referred to by column letter and row number. For example, the velocity 
at time t = 0.03s is determined as shown in the picture below (Figure 1.4. It is 
important to note that  
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Figure 1.4: Euler's Method used in a Cell Calculation 

 
Excel follows strict mathematical rules with respect to order of operations so 
the brackets in the expression are necessary for this calculation. The 
equation only needs to be typed once. To have Excel calculate the 
remaining values you need only copy the equation and paste it into the 
remaining cells. Excel will make the necessary adjustments to the equation 
automatically. NOTE: Key combinations on a Mac are different from those 
on the Windows version. To copy use Alt+C and to paste use Alt+V.  

You are ready to begin graphing once all of the data has been input and 
the calculations are complete. Highlight the columns that you want Excel to 
graph.  

 
Figure1.5: Highlighting Columns to use for Graphing 

 
Choose Chart from the Insert menu. The Excel Chart Wizard pops up 
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Figure 1.6: Selection from Menu 

 
[Figure 1.7]. The default setting for graphs in Excel is the column type that is 
not very practical for scientific graphing. Select the XY (Scatter) type and 
choose the scatter type that plots data points without lines. This should be 
the default.  

 
Figure 1.7: Chart Sub-Type Selection 

 
Click Next. The dialogue that displays [Figure 1.8] presents a preview of 

your graph. Excel will automatically set the left-most selected column to the 
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horizontal axis and the right most to the vertical one. You can always click 
on the Series tab to fix the selection if the data selection needs to be 
adjusted.  
 
 

 
Figure 1.8: Data Range and Series Options Dialogue Box 

 
Click Next to display the next set of Chart options [Figure 1.9]. The 

default title chosen by Excel is not adequate for your graph title. In this case, 
we are plotting Displacement vs. Time so that is the title that we choose. 
Axis labels should also be input in this dialogue. Select the Legend tab and 
deselect Show Legend.  

You should also select the Gridlines tab and deselect the grid line check 
boxes. Click Next.  

Choose Insert as New Sheet [Figure 1.10] with either the default title or 
one of your choice and click finish. Finally, once the chart is inserted into the 
workbook, right click in the blank area on the chart and choose Format Plot 
Area. Select the None radio button under the Area heading and click OK 
[Figure 1.11]. This will set the background colour to white that will provide a 
clearer copy when printing the graph.  

The data we used for our example does not lend itself to a linear fit. That 
said, it will suffice to outline the process of fitting data using a linear trend 
line. Click on one of the data points displayed on the graph. This selects all 



APPENDIX 1. GRAPHING WITH EXCEL 

 

93

 

 
Figure 1.9: Labeling Options 

 
 

 
Figure 1.10: Display Options 

 
of the data points. Open the Chart menu and select Add Trendline. The 
trend line wizard opens up presenting a dialogue box [Figure 1.12] on the 
screen. The default Trend/regression type is linear. Excel usually selects the 
correct data to fit. You can correct this in the Based on Series edit box if 
necessary. Select the Options tab Figure 1.13 then select both Set Intercept 
= and Display Equation on Chart. The default intercept is zero. This is the 
value that would be expected in many cases however it is not always 
appropriate or expected.  
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Figure 1.11: Adjust Background Colour 

 
 

 
Figure 1.12: Inserting a Linear Fit Trend Line 
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The physics of the problem at hand should guide you to the proper selection 
of the expected intercept.  
 

 
Figure 1.13: Trend Line Options 

 



 

 

Appendix 2 
 

Error Estimates and Measuring Tools 
 
 
Error Estimates 
 
The main sources of error that you will need to account for in this lab are 
observational errors, such as parallax and instrumental, such as the scale 
limitation of the measuring instrument at hand.  

Parallax refers to the apparent displacement or difference in orientation 
of an object when it is viewed from different lines of sight. It is minimized 
when the observer and the measuring instrument being used are properly 
aligned with the object being measured. In Figure 2.1 we see that the 
observer's line of sight should be perpendicular to the measuring 
instrument. Error due to parallax can be minimized by a careful choice of 
measuring position and by keeping 

 
Figure 2.1: Parallax & the Viewer's Line of Sight 



APPENDIX 2.. ERROR ESTIMATES AND MEASURING TOOLS 

 

97

 
a minimum separation between the object being measured and the 
measuring tool. It can be very difficult to eliminate parallax from a 
measurement and its effect should be taken into account when estimating 
uncertainty.  

Measuring tools and instruments are subject to two main sources of 
error, calibration and scale limitation. Calibration is the name given to the 
process in which a measuring instrument is brought into line with a given 
system of units. This is usually performed by comparing measurements 
made with the instrument with an accepted standard. In this lab we will 
assume, unless otherwise instructed, that the measuring instruments used 
are exact in comparison to a standard.  

Every measuring instrument is limited by the smallest division which it is 
capable of resolving. As an example, the metre sticks in this lab have a 
smallest division of 1mm. Sometimes the point at which a measurement is 
being taken lies between the smallest divisions of the measuring scale. We 
then must estimate whether the object is closer to one division mark or the 
other. This leads to an error in accuracy due to the Scale Limitation of the 
measuring instrument. Any measurement in this lab, including those made 
with electronic equipment, is subject to a scale limitation error of one-half of 
the smallest division available on the instrument. For example, the metre 
sticks in this lab have a scale limitation of 0.5 mm.  
 
Precision Measuring Tools 
 

As was discussed in the introductory chapters in this manual, precision 
speaks to the reproducibility of measurements. The precision measuring 
tools you may be using in the lab, vernier calipers and micrometers, are 
both very precise and very accurate. 

A vernier caliper makes use of a vernier scale to accurately measure 
fractions of a scale division. The calipers have both a fixed main scale and a 
sliding vernier scale. Most vernier calipers have two sets of jaws; one for 
measuring internal distances and one for measuring external distances. 

 When the jaws of the vernier are closed, the zero mark of the main 
scale (assuming the instrument has no zero error) and the zero mark of the 
vernier scale coincide. No other marks on the vernier scale will coincide with 
any marks on the main scale. Let us assume that the vernier caliper being 
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considered has one millimetre as its smallest divisions. The vernier scale 
then  

 
Figure 2.2: The Vernier Caliper 

 
will allow us to accurately measure as small as 0.1 mm. Thus if we open the 
caliper by 0.1 mm from closed we should find that the first vernier mark on 
the vernier scale will now coincide with the first millimetre mark on the main 
scale. Opening it by 0.2 mm will find the second vernier mark coinciding with 
the second millimetre mark on the main scale. In practice, we would 
normally open the vernier caliper wide enough to go over (assuming an 
external measurement) the object in question then carefully close the caliper 
and read the measurement. To determine the measurement we first locate 
the zero mark on the vernier scale and read the main scale to the main 
scale mark closest to and before it. We then determine which of the vernier 
marks aligns most exactly with one of the main scale marks and add that to 
the previous determination. A vernier caliper becomes quite easy to use 
with a bit of practice.  
 

 
Figure 2.3: The Vernier Scale: A reading of 33.6 mm. 
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Consider Figure 2.3. The measurement shown here is 33.6 mm. The first 

33 mm is determined by the alignment of the zero bar on the vernier scale 
with the main scale. the 0.6 mm is found by determining which vernier scale 
mark lines up with a mark on the main scale.  
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Appendix 3  
 

Resistor Colour Code  
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Appendix 4  
 
 

Logarithmic Graphing Paper
 
 



A4 – Logarithmic Graph Paper 
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Appendix 5  
 

Electric Field Graphing Paper
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