
PHYS4171-Thermal Physics and Statistical Mechanics, 
Winter 2007 

Note for Midterm #1 
Thermodynamic Systems, Microstates and Macrostates 
 

i. Thermodynamic Systems are comprised of large number of atoms or 
molecules (N > mole = 6.023 x 1023). They can exist as a gas, liquid, 
or solid. For the midterm you will be concern mainly with systems in 
the gas states. 

ii. The Microstates of a system are specified by the microscopic 
parameters of the atoms and/or molecules that comprise the systems. 
For example, the microstates of a helium gas are specified by the 
positions, momenta, and energies of the helium atoms. 

iii. The Macrostates of a system are specified by macroscopic parameters 
that can be determined by experiments. Examples of such 
macroscopic parameters are the temperature (T), pressure (P), volume 
(V), and energy (E) of the system. 

 
The Ideal Gas 
 
A system of ideal gas is comprised atoms or molecules at sufficiently low 
density (dilute) to neglect the interactions between them. 

i. Ideal Gas Equation 	PV =NkBT  
ii. The Equipartition Theorem states that the energy of a system of ideal 

gas is 
		
E = f

2NkBT ,where N is the number of particles in the system, and 

f  is the number of active quadratic degrees of freedom. 
iii. A system of monatomic ideal gas is comprised of one kind of atoms, 

usually a rare gas such as helium, argon, or xenon. There are three 

translation degrees of freedom. Hence the energy is 
		
E = 32NkBT ,always. 

iv. A system of diatomic ideal gas is comprised molecules of two bonded 
atoms. Examples are hydrogen molecules (H2), oxygen molecules 
(O2), and carbon monoxide (CO). There are three translation, two 
rotational, and one vibrational degrees of freedom. Near room 
temperature (∼300K) only the translational and rotational degrees of 

freedom are active, f = 5, 
		
E = 52NkBT , 	near	room	temperaure	 ≈ 	300K .At 



high temperatures (> 700 K) all degrees of freedom are active, f = 6, 

		
E = 62NkBT , 	high	temperaure	 > 	700K .  

v. A system of polyatomic ideal gas is comprised molecules of three or 
more bonded atoms. Examples are water molecules (H2O), carbon 
dioxide (CO2), and methane (CH4). In general, there are three 
translation, three rotational, and 3n − 6 vibrational degrees of 
freedom, where n is the number of atoms in the polyatomic molecules. 

 
The Multiplicity of a Macrostate of a Monatomic Ideal Gas 
 
For a given macrostate (specified by T, P, V, E…), there are many possible 
microstates. The number of microstates of a macrostate is the multiplicity 
of the macrostate. 
 
A system of monatomic ideal gas with N particles in a macrostate described 
by the temperature, and volume, V, has the multiplicity: 

		Ω = DV NT3N/2 ,	where	D	is	a	constant.  
 
The Entropy of a Macrostate of a Monatomic Ideal Gas 
 
The entropy is defined as 		S = kB 	lnΩ.  
 
A monatomic ideal gas has the entropy 

		S = kB 	ln DV NT3N/2( ) ,	where	D	is	a	constant.  
 
State Functions 
 
The macrostates or thermodynamic states of a thermodynamic system are 
defined by state functions, also called state variables or thermodynamic 
functions, which are macroscopic parameters that can be determined 
experimentally. Thus far we have concentrated on gas systems where, the 
state functions (thermodynamic functions) are: temperature (T), pressure (P), 
volume (V), energy (E), and entropy (S). So far we have assumed that the 
number of particles in the gas system, N, is fixed. 
 
 
 
 



Equation of State 
 
The equilibrium states of a thermodynamic system are described by equation 
of states, which are mathematical relations that relate the state functions (P, 
V, T….). For a gas system of N particles, an equation of state of three state 
variables completely specifies the macrostates.  
 
 

An important example is the ideal gas equation
	
PV =NkBT→ P =

NkBT
V

, and 

consequently P is a function of T and V, which is a surface in the PVT 
coordinate system. The ideal gas surface is illustrated below.  

 
 
However, it should be noted that the choice of the state functions P, V, T is 
not unique. The macrostates of a gas system can be expressed in terms of an 
equation of state involving any three state functions. For example, another 
equation of state for a monatomic ideal gas is the Sackur-Tetrode equation 
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.This equation expresses S as a function of E 

and V, and is a surface in the SVE coordinate system. Later it will be shown 
that for a monatomic ideal gas, the ideal gas equation and the 
Sackur-Tetrode equation are equivalent. 
 
 
Thermodynamic Processes and State Functions 
 
Thermodynamics is the study of how the state functions change when a 
system undergoes a thermodynamic process. Examples of thermodynamic 
processes are an adiabatic compression of a gas and the heating of a liquid. 

P 
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T 
Ideal gas surface 
PV = NkBT 



In a thermodynamic process, the state functions follow vary along a curve. 
For example, in the adiabatic compression of a gas, the variation of P, V and 
T are along curves (paths), as shown in figures 1a, 1c, and 1d. These curves 
(paths) are described by the equations P = P (V), or P = P(T), or T = T(V). 
As shown in figure 1b, the variation of state functions can also be described 
by the equations S = S(E), S = S(V), or E = E(V). 

 
The change of the state functions in the thermodynamic processes shown in 
Figures 1a-1d depends only on the endpoints, but not the paths taken:  

i. Figure 1a: For both path 1 and path 2 

		ΔP = P2 −P1 ,	P1 	− 	pressure	in	state	1,	P2 	− 	pressure	in	state	2    

		ΔV =V2 −V1 ,	V1 	− 	volume	in	state	1,	V2 	− 	volume	in	state	2
		ΔT =T2 −T1 ,	T1 	− 	temperature	in	state	1,	T2 	− 	temperature	in	state	2  

		ΔS = S2 − S1 ,	S1 	− 	entropy	in	state	1,	S2 	− 	entropy	in	state	2  

		ΔE = E2 −E1 ,	E1 	− 	energy	in	state	1,	E2 	− 	energy	in	state	2  
ii. Figure 1b:		ΔP = P2 −P1 ,	 		ΔV =V2 −V1 ,	 		ΔT =T2 −T1 ,	 		ΔS = S2 − S1 ,	 and 

		ΔE = E2 −E1.  
iii. Figure 1c: For reverse processes the change in state functions are 

negative. 		ΔP1→2 = P2 −P1 = − P1 −P2( ) = −ΔP2→1 ,	 		ΔV1→2 = −ΔV2→1 ,	  

		ΔT1→2 = −ΔT2→1 ,	 		ΔS1→2 = −ΔS2→1 ,	 and 		ΔE1→2 = −ΔE2→1 ,	  
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Figure 1a 
State 1 → State 2 
path 1, path 2 
PVT diagram 

Figure 1b 
State 1 → State 2 
path 1, path 2 
SVE diagram 

Figure 1c 
State 1 → State 2 
State 2 → State 1 
PVT diagram 

Figure 1d 
Cyclic process 
PVT diagram 



iv. Figure 1d: For cyclic processes the state functions do not change: 
		ΔP =0,	 		ΔV =0,	 		ΔT =0,	 		ΔS = S2 − S1 ,	 and 		ΔE =0.	  

      
Work and Heat in Quasistatic (Slow) Processes, and the First Law of 
Thermodynamics 
 
A thermodynamic process in which the system remains in equilibrium 
during the whole process is called a quasistatic or slow process. The process   
 
In any thermodynamic process, there can be a heat flow, Q, into (out of) the 
system from (to) an external source (such as a heat reservoir or the 
surrounding environment). The system may also perform work, W, on the 
surrounding environment. W and Q are the way that the system exchanges 
energy with the surrounding environment. 
 
In any thermodynamic process there must be conservation of energy. This is 
expressed by the first law of thermodynamics: 

		Q =W +ΔE , 	ΔE 	is	thechange	in	energy	of	the	system.  
 

The Heat Capacity is defined as 
		
C ≡ heat	flow

change	in	temperature =
Q
ΔT

.  For a gas 

system there are two important kinds of heat capacity 		CV ,CP , the heat 
capacity at constant volume and pressure. For an ideal gas system: 

		
CV =

Nf
2 kB ,	CP =

N f +2( )
2 kB ,where f is the active degree of freedom. An 

important parameter is 
		
γ =

Cp
CV
.For an ideal gas 

		
γ =

Cp
CV

= f +2
f

=1+ 2
f
.  

 
Quasistatic (slow) processes of a gas system: 

i. Work Done 
		
W = PdV ,	Vi 	and	Vf ,Vi

Vf∫ are the volume of the initial and final 

states respectively. As mentioned earlier in a thermodynamic process, 
the pressure is a function of the volume P = P(V). 

ii. Heat Flow For an isothermal process in which temperature remains 
constant		Q =TΔS , 	ΔS 	is	the	change	in	the	entropy	of	the	system.  

iii. For a process in which the temperature changes, use 
		
ΔS = q

T
, 	where q 

is the infinitesimal heal flow, and 		q=CΔT ,where C is the heat capacity 



and	ΔT is the infinitesimal change in temperature. The total change in 

entropy is 
		
ΔS = C

T
dT .

Vi

Vf∫  

 
Isothermal Compression (Expansion) 
 
In an isothermal compression (expansion) the temperature, T, remains 

constant. For an ideal gas using the equipartition theorem 
		
E = f

2NkBT ,  it is 

easy to see that .0=ΔE  Given an initial state values TVP ii ,, the final state 
values TVP ff ,, can be found by the ideal gas equation .NkTPV =  The initial 
and final entropy , and fi SS  can be found from the Sackur-Tetrode equation. 

The work done is 
		
W = PdV =NkBT

dV
VVi

Vf∫ .
Vi

Vf∫  

 
Adiabatic Compression (Expansion) 
 
Here the system is insulated so that 0=Q → .EW Δ−= For and ideal gas 
system it was shown in class (and in the textbook) that 		TV γ −1 = 	constant  and 

constant 1 =−γPV . Hence given an initial state values iii TVP ,, the final state 
values 		Pf ,Vf ,Tf can be found by the equations 		TiVi

γ −1 = 	TfVfγ −1 and . γγ
ffii VPVP =  

The initial and final entropy , and fi SS  can be found from the Sackur-

Tetrode equation. Finally using 
		
PV γ = 	PiViγ ⇒ P = PiVi

γ 1
V γ ,and assuming that 

the process is quasistatic (slow), the work done by the system is 

		
W = PdV = PiVi

γ dV
V γVi

Vf∫ .
Vi

Vf∫ The change in energy is found from the equation 

		W = −ΔE.  
 
Spontaneous (Rapid) Processes 
 
If a thermodynamic process occurs very rapidly, the process is said to be 
spontaneous. Examples are the free expansion of a gas, or a very rapid 
compression of a gas. During these processes the gas are never in 
equilibrium. The following points are relevant: 



i. Just as for quasistatic (slow) process, in a spontaneous (rapid) process 
the change in state function P, V, T, E, and S still depends only on the 
endpoints of the process. 

ii. Work Done The work done by the gas is 
		
W < PdV

Vi

Vf∫ .This differs from 

quasistatic (slow) process where the equality sign applies in the 
equation. 

iii. Entropy and Heat Flow For a isothermal process, the heat flow (Q) 

and change in entropy (	ΔS  ) are related by the inequality
		
ΔS > Q

T
.This 

differs from quasistatic (slow) process where the equality sign applies 
in the equation. 

 
Second Law of Thermodynamics 
 

i. First Version Consider an isolated system of many molecules whose 
macrostate is allowed to change. With overwhelming probability it 
will evolve to the macrostate with greatest multiplicity and remains 
there for a long time. 

ii. Second Version An isolated system will equilibrate to the macrostate 
(specified by P, V, T, S…) that maximizes its entropy. 

iii. Third Version If and isolated system is allowed to change, its entropy 
will either remain the same or it will increase: 		ΔS ≥0.  

iv. Final Version If and isolated system is allowed to change, 		ΔS =0, for a 
quasistatic (slow) process, and 		ΔS >0, for a spontaneous (rapid) 
process. 

 
Clarification of the Second Law of Thermodynamics 
 

i. The second law applies only to an isolated system that cannot 
exchange energy with its surrounding 

ii. For a system in contact with a heat reservoir, the second law applies if 
and only if the total change in entropy (system + reservoir) is 
considered. 

 
Forbidden Processes 
Process that violates the second law of thermodynamics cannot occur. 
Consider hypothetical systems with infinite heat capacity, ,∞=C which 
remain at the same temperatures regardless of the heat flow into or out of the 
systems. 



 
Reversible and Irreversible Processes 

i. Reversible Quasistatic (Slow) Process As mention in a quasistatic 
process there is no change in entropy ΔSforward = 0. Hence the reverse 
process is also allowed since ΔSreverse = −ΔSforward = 0. It is said that the 
forward process is reversible. For example a slow isothermal 
expansion is reversible, since the reverse process, a slow isothermal 
expansion, would not change the total entropy (system+ environment). 

ii. Irreversible Spontaneous (Rapid) Process As mention in a 
spontaneous process there is no change in entropy ΔSforward > 0. Hence 
the reverse process is not allowed since ΔSreverse = −ΔSforward < 0, 
which violates the second law. It is said that the forward process is 
irreversible. For example a free expansion is irreversible, since the 
reverse process would result in an increase in entropy. 

Heat Engines (Chapter 3)   
i. Efficiency The efficiency of a heat engine is 

		
e =1− heat	expelled	during	one	cycle

heat	extracted	during	one	cycle .  See question 1 of assignment #3. 

ii. Efficiency of a Carnot Cycle 

		
e =1− Qc

Qh
=1−Th

Tc
, 	valid	for	quasistatic	(slow)	process. (equation 3.4 in text) 

Density of State (Chapter 4) See problem 4 and 5 of assignment 
Gibb’s Method for finding density of state, which in three dimensions (3D) 

is
		
Position	Volume( ) Momentum	Volume( )

h3
= V
h3
4πp2dp . This then uses the free 

System A 
TA = 1000 K 

System B 
T = 300 

3000 J of 
heat from 
A to B 

 

 
The process can occur since the total entropy 
increases !Stotal > 0. 
 

System A 
TA = 700 K 

2100 J of 
heat from 
B to A 

System B 
T = 300 

 

 
The process can occur since the total entropy 
increases !Stotal < 0, in violation of the second 
law of thermodynamics 
 



particle dispersion relation		ε = p
2 /2m→dε =2pdp/m to give

		
D ε( ) = 2π 2m( )3/2Vε1/2

h3
.(4.11) 

Number of particle state with energy 	ε = ε1 to	ε = ε2 ,
		
Nε1 ,ε2

= dεD ε( )
ε1

ε2∫ . 

Canonical Ensemble (Chapter 5) See Problem 1 and 2 of chapter 5, 
Problem 4 and 5 of assignment 3. 
For a system in contact with a heat reservoir at temperature T, the 
probability that a microstate j with energy Ej is occupied is 

 ( ) ,
Z
ejP
kT
E j−

= where 
		
Z1 = e

−
Ei
kT

i
∑  is the one-particle partition function. 

Semi-classical one-particle partition		Z1 = D ε( )0

∞

∫ exp −βε( )  
N distinguishable non-interacting particles,		ZN = Z1

N . 

N indistinguishable non-interacting particles,
		
ZN =

Z1
N

N! . 

Equipartition Theorem example: 

The density of state of a 3d free particle is given by
		
D ε( ) = 2π 2m( )3/2Vε1/2

h3
, where ε is 

the energy of a particle. In the canonical ensemble, at temperature T, the total number of 

particles is determined by 		N = dεD ε( )exp −ε /kBT( )0

∞

∫ . Show

		
N =

2πm( )3/2V
h3
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The average energy at temperature, T, is		 E = dεεD ε( )exp −ε /kBT( )0

∞

∫ . Show

		
E =

2πm( )3/2V kBT( )3/2
h3

3
2kBT . Use the results to determine the equipartition theorem of 

a monatomic ideal gas. 
Solution:  

		
N = dεD ε( )exp −ε /kBT( )0

∞

∫ =
2π 2m( )3/2V

h3
dεε1/2exp −ε /kBT( )0

∞

∫ . 

Substitute		x
2 = ε /kBT→ε = kBTx

2→dε =2kBTxdx , gives 



		
N =2

2π 2m( )3/2V
h3

kBT( )3/2 dxx2exp −x2( )0

∞

∫ . Use integral		 x2exp −ax2( )0

∞

∫ = π /4a3/2 to 

get

		
N =2

2π 2m( )3/2V
h3

kBT( )3/2 π
4 =

2πm( )3/2V
h3

⎛
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kBT( )3/2 . 

For mean (average) energy

		
E = dεεD ε( )exp −ε /kBT( )0

∞

∫ =
2π 2m( )3/2V

h3
dεε 3/2exp −ε /kBT( )0

∞

∫  

 
Substitute		x

2 = ε /kBT→ε = kBTx
2→dε =2kBTxdx and using

		 x4 exp −ax2( )0

∞

∫ =3 π / 8a5/2( )   

		
E =2

2π 2m( )3/2V
h3

kBT( )5/2 dxx4 exp −x2( )0

∞

∫ =2
2π 2m( )3/2V

h3
kBT( )5/2 3 π

8   

		
E =

2πm( )3/2V kBT( )3/2
h3

3
2kBT . Using

		
N =

2πm( )3/2V kBT( )3/2
h3

→ E = 3N2 kBT . 

 


