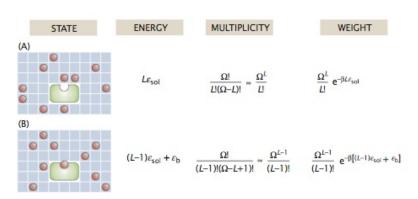
Useful Equation

Units 1 mol = 6.023×10^{23} , 1 mm = $10^{-3}m$, $1\mu m = 10^{-6}m$, 1 nm = $10^{-9}m$, 1 pm= $10^{-12}m$, 1 fm = $10^{-15}m$, molar concentration $1M = \frac{1mol}{L}$, with $1L = 10^{-3}m^3$, $1M = 6.023 \times 10^{-15}m$ $10^{26}m^{-3}$. 1 molecule in a box size of $1nm^3 \to \frac{1 \div 6.023 \times 10^{23} mol^{-1}}{1nm^3 \times 10^{-27}m^3 \cdot nm^{-3} \times 10^3 L \cdot m^{-3}} = 1.6 \frac{mol}{L} = 1.6 M$. **Algebra:** $ln(xy) = lnx + lny; ln(\frac{x}{y}) = lnx - lny; lnx^n = nlnx; e = 2.71828; lne = 1; 2^x = 1$ $10^{0.301x}. \text{ Calculus: } \frac{d(e^{ax})}{dx} = ae^{ax}; \frac{d(e^{af(x)})}{dx} = a\frac{df(x)}{dx}e^{af(x)}; \frac{d(\ln ax)}{dx} = \frac{1}{x}; \frac{d(\ln af(x))}{dx} = \frac{1}{f(x)}\frac{df}{dx}.$ **Thermodynamics:** PV = Nk_BT, $k_B = 1.381 \times 10^{-23}J \cdot K^{-1}$, 1st law of Thermodynamics: $dE = TdS - PdV + \mu dN \rightarrow dS = \frac{1}{T}dE + \frac{P}{T}dV - \frac{\mu}{T}dN$, entropy $S(E, V, N) \rightarrow dS =$ $\left(\frac{\partial S}{\partial E}\right)_{VN} dE + \left(\frac{\partial S}{\partial V}\right)_{EN} dV - \left(\frac{\partial S}{\partial N}\right)_{EV} dN \rightarrow \left(\frac{\partial S}{\partial E}\right)_{VN} = \frac{1}{T}; \left(\frac{\partial S}{\partial V}\right)_{EN} = \frac{P}{T}; \left(\frac{\partial S}{\partial N}\right)_{EV} = -\frac{\mu}{T}$ **Pressure:** 1 atm = $1.01325 \times 10^5 \frac{N}{m^2} = 1.01325 \times 10^5 Pa$; 1 mm Hg = 133 Pa;760 mm Hg = 1 atm. Osmotic Pressure $P = n_{sol}k_BT$, n_{sol} is solute number concentration. ideal gas, Sackur-**Tetrode** equation: $S = Nk_B \left[ln \left\{ \left(\frac{V}{N} \right) \left(\frac{4\pi mE}{3Nh^2} \right)^{3/2} \right\} + \frac{5}{2} \right] \rightarrow PV = Nk_BT$, equipartition theorem, $E = \frac{3}{2}Nk_BT$. Thermodynamic definition of entropy, $\Delta S = \frac{heat}{T} = \frac{Q}{T} \rightarrow$ for gas/liquid $dS = S_{gas}$ $S_{liquid} = \frac{Q_{vaporization}}{T}$, and using **Sackur-Tetrode**, $\frac{W_{gas}}{W_{liquid}} \sim \left(\frac{V_{gas}}{V_{liquid}}\right)^N$. Also PV = nRT, n is number of mole, $R = 8.314 \frac{J}{K \cdot mol}$. Fluid drag force, $f = v\zeta$, $\zeta = 6\pi\eta R$, for example viscosity of water, $\eta = 10^{-3} Pa \cdot s = 10^{-3} \frac{kg}{m \cdot s}$, also power = force times speed, P = fv. Fluctuation-Dissipation $D = \frac{k_B T}{\zeta}$. Energy: ATP hydrolysis, in vitro $\Delta G \sim -32 \frac{kJ}{mol}$, in vivo $\Delta G \sim -54 \frac{kJ}{mol}$ **Stirling Approximation:** large N, $lnN! \sim NlnN - N$, or more exact $N! \sim N^N e^{-N} (2\pi N)^{1/2}$. **Receptor-Ligand Binding:** $L + R \leftrightarrow LR$, $k_d = \frac{[L][R]}{[LR]}$, $P_{bound} = \frac{[LR]}{[R]+[LR]}$ or for lattice model, $P_{bound} = \frac{(c/c_0)e^{-\beta\Delta\varepsilon}}{1+(c/c_0)e^{-\beta\Delta\varepsilon}}$, c = [L], reference concentration $c_0 = \frac{1}{V_{box}}$, with $k_d = \frac{1}{V_{box}}e^{\beta\Delta\varepsilon}$. Hill **Function**, $P_{bound} = \frac{([L]/k_d)^n}{1+([L]/k_d)^n}$, n is the order of the Hill Function. For two ligands 1 and 2, with concentration $[L]_1$ and $[L]_2$ of order n_1 and n_2 , respectively, $P_{bound,1} = \frac{([L]_1/k_{d1})^{n_1}}{1+([L]_1/k_{d1})^{n_1}+([L]_2/k_{d2})^{n_2}}$ and similar for $P_{bound,2}$, with k_{d1} and k_{d2} , the respective dissociation constants. **Polymer/DNA:** $\langle R_{ee}^2 \rangle = Na^2$, N is number of Kuhn segments, a is the length of a Kuhn segment, $a = 300L_{bp}$, where $L_p = \frac{1}{3}nm$ is the average length of one basepair (bp), a = 100nm. $\sqrt{\langle R_G^2 \rangle} = \sqrt{\frac{L\xi_p}{3}}$, with the persistent length $\xi_p = \frac{a}{2} = 50nm$. Free Polymer: P(r) = $\left(\frac{3}{2\pi N a^2}\right)^{3/2} 4\pi r^2 e^{-\frac{3r^2}{2Na^2}}; \text{ Tethered polymer:} P(r) = \left(\frac{3}{2\pi N a^2}\right)^{1/2} \frac{r}{R} \left(e^{-\frac{3(r-R)^2}{2N/a^2}} + e^{-\frac{3(r+R)^2}{2N/a^2}}\right).$ **partition function** $Z = \sum_{\varepsilon} gexp(-\beta \varepsilon)(\varepsilon) exp(-\beta \varepsilon)$, with summation over all microstates, and

partition function $Z = \sum_{\varepsilon} gexp(-\beta\varepsilon)(\varepsilon)exp(-\beta\varepsilon)$, with summation over all microstates, and ε is the energy of a group of microstates with the same energy, and $g(\varepsilon)$ is the multiplicity or the number of microstates that has the energy ε . The probability that a microstate with energy ε is occupied is simply $P(\varepsilon) = \frac{g(\varepsilon)exp(-\beta\varepsilon)}{z}$. Average Energy $\langle E \rangle = \sum_{\varepsilon} \varepsilon P(\varepsilon) = \frac{\sum_{\varepsilon} \varepsilon g(\varepsilon)}{z}$

More Data: 1 Dalton (Da) = $1.6 \times 10^{-27} kg$; 1 protein $\sim 300aa$; 1 Hemoglobin mass $\sim 64\ 000Da$, diameter 5.8 nm. E. Coli ~ 5400 genes, 5.4×10^6 bp.



The left figure shows the binding model when the ligands are **indistinguishable**. For example, if all ligands are on the lattice (no binding), the multiplicity of L ligands on Ω lattice sites is

$$multiplicity = \frac{\Omega!}{L! (\Omega - L)!}$$

The L! is needed to correct for the overcounting. On the other hands if the ligands are **distinguishable** then the multiplicity of arranging L ligands on Ω lattice sites is

multiplicity =
$$\Omega(\Omega - 1)(\Omega - 2) \cdots (\Omega - L + 1) = \frac{\Omega!}{(\Omega - L)!}$$