

Example on Newton's second law for system A $M_1 = 3 kg$ block and a $M_2 = 2 kg$ block are connected by a string threated through a **frictionless** pulley system. **Initially (I)** the blocks are held at **rest**. It is then released. Analyze the com acceleration, \vec{a}_{com}

Calculate the **initial** Y **center-of-mass** (**COM**) position. X-comp is not important $Y_{com,I} = \frac{M_1 Y_{i,I} + M_2 Y_{2,I}}{M_1 + M_{2t}} = \frac{3kg \times 0.2m + 2kg \times (-0.3m)}{3kg + 2kg} = 0$ [2] minus [1] $a = \frac{M_1g - M_2g}{M_1 + M_2} = 1.96\frac{m}{s^2}$ Draw FBD and find acceleration (in red) $M_1: T - M_1g = -M_1a$ [1] Use [1], $T = M_1 g - M_1 a = 23.52N$ 0.2 m $M_2 = -1.96 \frac{m}{c^2}$ Y = 0 $M_1 = -1.96 \frac{m}{c^2}$ Y = 0 $Y_{1,I} = 0.2 \text{ m}$ M_1 M_1g Y =0 Find y component of $ec{F}_{net}$ M₁ $Y_{1,F} = -1.76 \text{m} F_{net,y} = -M_1 g + T + T - M_2 g = -1.96 N$ $F_{net,v} = Ma_{com}$ Newton's second Law for system: $-1.96N = (3kg + 2kg)\left(-0.392\frac{m}{s^2}\right) = -1.96N$ M_2g $a_2 = 1.96 \frac{m}{2}$ **COM position**, \vec{r}_{com} , accelerates according to System obeys Newton's second law Newton's Law, $\vec{F}_{net} = M \vec{a}_{com}$