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Modified Levinthal’s Paradox

Wolynes and colleagues (28, 29) pro-
posed that the overall energy landscape
is funnel-shaped under folding condi-
tions (Fig. 3). Regardless of where on
this surface any particular molecule may
happen to be, it follows the gradient
toward a lower energy state, like a ball
rolling down a free energy hill. Wending
its way downhill, the protein accumu-
lates favorable interactions that lower
the energy, thereby promoting chain
compaction and reducing the search vol-
ume. On a funnel landscape, molecules
are driven toward the native state reli-
ably, cooperatively, and with gathering
speed as the U º N folding reaction
progresses.

But there’s another problem. Why
doesn’t the ball get stuck in a ditch en
route to the bottom of the hill (i.e., in a
kinetic trap)? Clearly, that doesn’t hap-
pen in known cases where proteins fold
to completion on rapid timescales (27).

Restating the issue in physical-chemical
terms, one might expect that a folding
polypeptide chain, with its heteroge-
neous amino acid sequence, would inevi-
tably encounter favorable but nonnative
interactions at metastable energy levels.
Such frustrating interactions would etch
a rugged free-energy landscape, with
multiple minima and greater-than-kT
energy barriers between them. To ratio-
nalize this situation, Bryngelson and
Wolynes (30) imported a key concept
from physical systems: the idea of a spin
glass.

A spin glass, originally introduced in
the context of frustrated, random mag-
netic systems by Anderson (31), is an
important paradigm in physics for many
classes of problems. Classic optimization
problems, such as the optimal placement

of circuit elements on a chip and the
determination of the best route of a
traveling salesman, models of content-
addressable memories in the brain, and
models of prebiotic evolution, all re-
quire an energy or fitness landscape
with multiple minima and barriers be-
tween them. As pointed out by Ander-
son (32), such a landscape confers both
stability and diversity: stability because
each minimum is locally stable and di-
versity because there are multiple min-
ima in such systems. It is notoriously
difficult to find the true ground state of
a spin glass, owing to the rugged nature
of the energy!fitness landscape.

As it folds, a protein is stabilized by a
large number of weak (i.e., noncovalent)
interactions and can visit numerous,
sequence-dependent minima, a classic
spin-glass landscape. How then does the
protein fold rapidly and reproducibly
within such a landscape but evade frus-
trating, glassy behavior? In Wolynes’
model, proteins avoid such metastable
traps because accessible interactions are
selected by nature to be minimally frus-
trating, resulting in smoother funnel
walls, more akin to an unfrustrated fer-
romagnet than a spin glass.

What forces or factors can reduce the
ruggedness of funnel walls? In an ex-
treme constructed example of a mini-
mally frustrated system devised by Go
(33), native contacts are assumed to in-
teract favorably, whereas nonnative con-
tacts do not interact at all. In the more
realistic case, the landscape is shaped by
evolutionary pressure to select those
amino acid sequences that minimize the
energy of the native fold while avoiding
potentially frustrating alternatives as
well.

The spin-glass model has spread
from condensed matter physics into
many disparate fields. Imported into
protein chemistry as the funnel model,
it provides an answer to the Levinthal
paradox and is in satisfying accord
with statistical thermodynamics (i.e.,
the new view); no special equilibrium
states need be invoked.

The Funnel Landscape Is Explicitly
Sequence-Dependent. The funnel model
describes the behavior of a population
of proteins of identical sequence as they
wend their way downhill from U to N
under folding conditions. Every unique
sequence has its own funnel. For example,
the globin fold is attained by thousands
of different known globin sequences,
many of which have only a small frac-
tion of their residues in common (34).
Each such globin sequence is associated
with its own characteristic folding fun-
nel. All globin sequences are presumed
to have evolved so as to adopt the glo-

bin fold and to maintain similar overall
structural characteristics (35), while si-
multaneously avoiding frustrating traps
and dead ends in transit. The need to
avoid unintentional, impeding interac-
tions has long been recognized in pro-
tein-design research, where it is called
‘‘negative design’’ (36, 37). Neither
folding theorists nor protein designers
can ignore the inadvertent pitfalls of
frustration.

Part 2. Questioning the Current
Perspective: A Tale of Two Landscapes
The current view of folding is grounded
in an explicit, amino acid sequence-
dependent funnel landscape, as just de-
scribed. However, the population also
is regulated by a second, structure-
dependent but sequence-indifferent
landscape, although only by implication.
Both landscapes impose major con-
straints on any sequence-dependent
folding model.

The Sequence-Indifferent Landscape. As
depicted above, the unfolded free en-
ergy landscape is vast and featureless.
Most proteins unfold under rather sim-
ilar conditions of temperature or dena-
turant concentration, consistent with
!Gconformational

0 values within the typical
range of " 5 to " 15 kcal!mol (7). In
other words, the unfolded free energy
landscape is sequence-indifferent be-
cause structure is abolished under
approximately the same conditions,
regardless of sequence.

Given the independence of backbone
torsion angles under unfolding conditions
(17), this landscape spans all conceiv-
able conformations of the polypeptide
chain, including all possible native folds
and subfolds. To be specific, under un-
folding conditions, a lysozyme molecule
could happen upon the ribonuclease
fold. Although the likelihood of such an
encounter is negligibly small, it is essen-
tially no smaller than the probability
that the molecule would chance upon its
own native fold.

Upon shifting to folding conditions,
distinct minima must ultimately emerge
from this previously featureless land-
scape, each corresponding to a stable
domain (i.e., a simple fold of # 100 resi-
dues) (14, 38–41).

To see this situation, consider the
shift from U to N. Here, it is important
to realize that the folding reaction, U º
N, is not an ordinary chemical reaction;
no covalent bonds are made or broken.
For individual proteins, the reaction is
all-or-none: proteins are either folded or
unfolded, with a negligible population of
partially folded intermediates, as noted
above. For a population of proteins, the
folded fraction is simply dialed up or

Fig. 3. A folding funnel. The funnel landscape
depicts protein folding as a process that proceeds
from a high entropy, disorganized state lacking in
intramolecular interactions (mouth), to a low en-
tropy, organized state with native intramolecular
interactions (spout). Evolution has selected se-
quences that avoid frustrating traps en route from
mouthtospout, smoothingwhatmightotherwisebe
a rugged landscape. Under folding conditions, indi-
vidual molecules can follow any route from mouth to
spout, like a ball rolling down a free energy hill. One
such trajectory is shown here. For a gallery of variant
funnel landscapes, see ref. 126.
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scribed by the Flory rotational iso-
meric state model (17), which takes
into account constraints on bond rota-
tion imposed by covalent chemistry. In
any case, the number of conceivable
paths for even a small protein of 100
residues is of order at least 1030 and
possibly much larger (18). At every
time slice, each molecule in the popu-
lation will have a specific conforma-
tion, but with only small energy
barriers between them (approximately
kT; k is the Boltzmann constant; T is
the absolute temperature), so confor-
mations are readily interconvertible.

Accordingly, the structure of any sin-
gle molecule would not represent the
population in any meaningful sense.
However, it is possible to measure the
degree to which molecules in the popu-
lation are expanded or contracted, as
given by their radius of gyration, RG, the
rms distance of atoms from their com-
mon center of gravity:

RG !
!"

i!1

N

RGi
2

N , [1]

where RGi is the distance of atom i from
the center of gravity and N is the num-
ber of atoms in the molecule (19). The
population then can be characterized by
its average radius of gyration, which can
be determined experimentally under
conditions of interest (20, 21).

Flory (17) provided a simple relation-
ship between these coil dimensions and
solvent quality. For a statistical-coil
polymer with excluded volume, the ra-
dius of gyration, RG, is given by:

RG ! R0nv, [2]

where R0 is a constant that depends on
intrinsic chain stiffness, n is the number
of residues, and " is the exponent of
interest that depends on solvent quality.
Values of " range from 0.33 for a col-
lapsed molecule, like a folded protein,
to 0.6 for a self-avoiding random walk,
like a denatured protein.

Is this theory valid for denatured pro-
teins? Persuasive evidence was provided
by Tanford (20), who demonstrated that
typical proteins denatured in 6 M guanidi-
num chloride (a strong denaturant) be-
have as structureless, statistical coils, with
mean radii of gyration that are consistent
with theory. Tanford’s corroborating stud-
ies established a compelling framework
for interpreting experimental protein
denaturation.

The current view, encapsulated in the
compact equation U º N, has been de-
veloped over the past 40 years or so.
Summarized in a sentence: individual

molecules are distributed across a vast,
undifferentiated energy landscape under
denaturing conditions but adopt a
unique native conformation spontane-
ously under folding conditions. At least
in a general outline, the folding picture
seems to be complete.

The Search Problem. An inescapable
search problem is deeply embedded in
this view of the folding reaction, one
that has stimulated the field since it was
first made apparent in a famous back-
of-the-envelope calculation (22) that
came to be known as the ‘‘Levinthal
paradox.’’ In a nutshell, how can an un-
folded polypeptide chain that is free to
sample the vastness of conformational
space discover the native conformation
in biological real-time after a shift to
folding conditions?

In greater detail, Corey and Pauling
(23) demonstrated that the peptide bond
has partial double-bond character, and,
therefore, the six backbone atoms in the
peptide unit (-C# -CO-NH-C# -) are co-
planar, or largely so. Consequently,
there are only two primary degrees of
freedom in each peptide unit, parame-
terized by Ramachandran et al. (24) as
the two torsion angles, $ and % (Fig.
2A). Further, Ramachandran and Sa-
sisekharan (25) showed that only a small
subset of these torsions result in clash-
free configurations (Fig. 2B); other val-
ues would experience stiff repulsive
forces between the electron clouds of
nonbonded atoms within the peptide
unit.

In Levinthal’s original estimate (22),
there are three staggered configurations
per torsion, nine (3 " 3) conformers
per peptide unit and, therefore, 9100 #
1095 conformers for a 100-residue pro-
tein. With a subpicosecond speed limit
for bond rotations, the universe would
end before chains could encounter the
native conformation via an unguided
search. Of course, this calculation was
oversimplified for dramatic effect (see
e.g., ref. 26.

However, proteins are known to fold
in the microsecond to millisecond range
(27), so even the addition of more real-
istic constraints cannot explain away the
underlying search problem. Under dena-
turing conditions, the number of con-
ceivable conformations far exceeds the
number of actual molecules in a dilute
protein solution, and, in the extreme,
every molecule might have a different
conformation. Whereupon, for a protein
with a typical stability of $10 kcal#mol,
on average all but one molecule in 17
million adopt the native fold after shift-
ing to folding conditions. This transition
from the unfolded population to the
folded population can be completed in

microseconds in some proteins (27). Es-
timates like this paint a paradoxical pic-
ture in which the ostensible magnitude
of conformational space is so large that
the native conformation could not be
discovered in microseconds, yet it is.

The Levinthal paradox adds a tempo-
ral dimension to the basic conundrum
wherein an ordered population emerges
spontaneously from a disordered popu-
lation, and we are still left seeking an
explanation.

The Folding Funnel. For Levinthal, his
back-of-the-envelope calculation was not
a paradox at all; rather, it was a vivid
demonstration that the native state is
attained via a directed search, but how?
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Fig. 2. The peptide unit. (A) Degrees of freedom.
The peptide bond, C%-N, has partial double-bond
character (23), so the six backbone atoms, -C# -C%O-
NH-C# -, in the peptide unit (shaded rectangles) will
be approximately coplanar. Consequently, there
are two primary degrees of freedom in each pep-
tide unit, the two torsion angles, $ and % (24).
Assuming complete independence of these angles,
there would be three staggered configurations per
torsion, 3 " 3 ! 9 conformers per peptide unit, and
9100 # 1095 conformers for a 100-residue protein.
(B) Residue $,% distributions. Sterically allowed $,%
regions for the alanyl dipeptide, from model stud-
ies of Ramachandran and Sasisekharan (25), are
shown in dark outline. Other regions are predicted
to be unpopulated because their backbone torsion
angles would cause a steric clash within the dipep-
tide unit. $,% distributions of experimental data
from the major populated regions from the coil
library (88) are shown superimposed on the pre-
dicted sterically allowed regions.
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• Amino Acid (AA) either in correct 
(C) or incorrect (I)  conformation.

• c conformation is associated 
with N state

• I conformation associated with U 
state.

Proteins: Amino Acid (AA) 
Sequence

Amino Acid (AA) 
Conformations

C conformation is
Pc = α = Aexp(−EC / RT ) , where A is 
a constant, EC the internal energy 
of aa in the c conformation. 
I conformation is
PI = 1 - α = Aexp(−Ei / RT ) , where 
A is a constant, Ei the internal 
energy of aa in the i conformation. 



Application to RNASE A

N = 124 AA

Folding time !"#$%~1(

∆* = *, − *. = 484 12
3#$ and ∆4 =

4, − 4. = 1.46 12
783#$



Modified Levinthal Paradox on RNASE A

• Assume that ! is the average time that an amino acid (AA) convert between 
the " ↔ $ conformation.
• On average every ! the probability that a protein with N AA is in a folded 

native (N) state is %&. 
• On average every !, the probability of protein with N AA is in an unfolded 

(U) state is 1 − %&
• What about after a longer period of time ) ≫ !?
• In this case the number of ! intervals is + = -

.
• The probability after time t that the protein is in an unfolded state is 
/0 ) = 1 − %& 1 = 1 − %&

2
3



Modified Levinthal Paradox on RNASE A

• The folding time !"#$% is the time when the protein has equal 
probability of being in the Native (N) or the unfolded (U) state, or 
&' !"#$% = 0.5 = 1 − ./

01234
5

• Solving, !"#$% = 6
78.9:;

$< =7>?

• Rearranging we have @A 1 − ./ =
B

C1234
−0.693

• For RNASE A, N = 124 and experiment found !"#$%~1H, and assuming  
6 = 107=IH
• @A 1 − ./ = −6.93×107=;



Modified Levinthal Paradox on RNASE A

• Since ! < 1, for RNASE A, !$ = !&'( ≪ 1

• Use Taylor expansion, *+ 1 + - = - − /0

'
+ /1

2
− /3

(
+ ⋯, or if we use 

- → −-, *+ 1 − - = −- − /0

'
− /1

2
− /3

(
+ ⋯.

• If - ≪1, *+ 1 − - ~ − -
• For RNASE, *+ 1 − !$ = −6.93×10=&2 → !&'( = 6.93×10=&2

• Take the log base 10 of both side, 124*@A10 = *@A 6.93 − 13

• *@A! = BCD E.F2 =&2
&'(

= −0.09806 → !=10=H.HFIHE = 0.7978844



Modified Levinthal Paradox on RNASE A

• Pc = α = Aexp(−EC / RT ) , where A is a constant, EC the internal energy 
of aa in the c conformation.
• PI = 1 - α = Aexp(−Ei / RT ) , where A is a constant, Ei the internal 

energy of aa in the i conformation.

• !"!# =
%

&'% = ('
∆*"+
,- , with ∆./0 = ./ − .0

• Use 2 = 0.7978844, and T = 300 K, ∆./0 = −3.7 :;
<=>

• ∆./0 < 0 makes sense since the energy of the correct (c) should be 
lower than that of the incorrect (I) conformation.


