<u>Membrane Resting Potential and the Sodium Anomaly</u> Below is an image of a typical membrane, where the **intercellular** region (in) inside

the cell is filled with **cytosol** (water plus organelles, ions and proteins), and the **extracellular** region (out) is filled with extracellular fluid (mainly ionic solutions).

Resting Membrane Potential:

The interior (in) is usually more electrically more negative than the exterior (out): $\Delta V = V_{in} - V_{out} \approx -60 mV$.

Sodium Anomaly: In physics, it is well known that **positive ions** move to more **negative potential** region, and **negative ions** move to more **positive potential**. It is then not surprising that there are more **potassium** ions, **K**⁺, outside (extracellular) than inside (intracellular), and there are more **chloride** ions, **Cl**⁻, inside than outside. But it is surprising that there are more **sodium** ions, **Na**⁺, outside (positive potential) than inside (negative potential). This is called the **sodium anomaly** in Phillip Nelson's textbook. Data below shows the ion concentration of a typical **living** (*in vivo*) **cell**.

ion	z (valence)	Intracellular c _{i,in} , mM	Extracellular c _{i,out} , mM	Vi ^{Nersst} , mV
K+	+1	140	4	?
Na+	+1	4	140	?
Cl-	-1	4	120	?

Data of mamalian cell Membrane Rest Potential $\Delta V = -86mV$

Nernst Potential:

In class and in the textbook we calculate the Nernst's potential $V_i^{Nernst} = \frac{k_B T}{ze} \ln \frac{c_{i,out}}{c_{i,in}}$.

For above data: K⁺, $V_{K^+}^{Nernst} = -90 mV$; Na⁺, $V_{Na^+}^{Nernst} = 89 mV$; Cl⁻, $V_{Cl^-}^{Nernst} = -86 mV$. Note that they are **different** than the membrane potential $\Delta V = -86 mV$. On the next page, I will illustrate why this is a significant point.

Consider the distribution of charge in the presence of a voltage (battery):

The energy difference between charges on the top and bottom plate is:

$$\Delta \varepsilon = \varepsilon(\varepsilon) - \varepsilon(\varepsilon) = g(V(\varepsilon) - V(\varepsilon)) = g \Delta V$$
• From Boltzmann: $C(\varepsilon) = \varepsilon(\varepsilon) e^{-\Delta \varepsilon/4} T = c(\varepsilon) e^{-\frac{2}{3}} k_{0} T$
or $ln(\frac{C(\varepsilon)}{c(\varepsilon)}) = -\frac{2}{3} \Delta V$ Nerrist relation

The physical interpretation of the above is that in the presence of an **applied voltage** ΔV , the equilibrium charge distribution will be as the diagram above with more **positive ions** on the **negative bottom plate**. Another interpretation is that if there is charge distribution as in the above figure, then there will be a voltage

 $\Delta V = -\frac{k_B T}{q} \ln \frac{C_{top}}{C_{bottom}}$. Since the top is more positive than negative we identify the **top** as extracellular (out) and the bottom as intracellular (in), so for cells we have $\Delta V = -\frac{k_B T}{q} \ln \frac{C_{out}}{C_{in}} = -V_i^{Nernst}$. Basically the potential ΔV , depicted above is **negative** of

the Nernst potential equation V_i^{Nernst} .

Interpretation of Nernst Potential: From Ohm's law we know that an applied voltage will induce a current, $\Delta V = IR$. In the diagram above yhe Nernst potential V_{i}^{Nernst} calculated for the above distribution is the applied voltage needed to prevent a flow of charge - i.e. a current.

What happens in living cells? In the above data (previous page) we see that in general the Nernst potential is different from the membrane potential, $V_{K^+}^{Nernst} < \Delta V$ and $V_{Na^+}^{Nernst} > \Delta V$, but $V_{Cl^-}^{Nernst} = \Delta V$. This means that there must be a **leak current**, as will be illustrated in the next example.

IMPORTANT POINTS:

1. In the above definition the flow of ions is **positive** if it is from the inside (in) to outside (out), but in **class notes** we assume that **positive flow** is from **outside** (out) to **inside** (in), so the equation should be for **our course and assignment**: $I_i = Ag_i (V_i^{Nernst} - \Delta V) = (V_i^{Nernst} - \Delta V) / R_i$, where *A* is the effective cross section area, and $R_i = Ag_i$ is the resistance of the ion *i* (Na⁺, K⁺, Cl⁻).

2. Note that the conductance is G = 1/R and the conductance per unit area is g = G/A. Hence g = AG = A/R, which is how we derived the above equation. 3. For **negative ions** such as Cl⁻, the ion flow direction is reversed as defined above. 4. In general, $\Delta V \neq V_i^{Nernst}$. The data above, $V_{cr}^{Nernst} = \Delta V$ is **unusal**.