Lecture of October 24, 2018 Chapter 5: Energy and Equilibrium

Apichart Linhananta Department of Physics Lakehead University

Energy of Living Cells derived from ATP Hydrolysis

- $\Delta G = -30.5 kJ \cdot mol^{-1} \rightarrow \sim 12.5 k_B T$ at room temperature However textbook states that for *in vivo* systems it is $\rightarrow \sim 25 k_B T$
- Covalent bonds has energy $\sim 200 kJ \cdot mol^{-1} \sim 80 k_B T$, and cannot be broken by ATP hydrolysis

Major Forces in Biological System

Weak Intermolecular Interactions		
Force	Strength (kJ/mol)	Distance (nm)
Van der Waals	0.4-4.0	0.3-0.6
Hydrogen Bonds	12-30	0.3
Ionic Interactions	20	0.25
Hydrophobic Interactions	<40	varies

Van der Waals forces (non-bonded) between atoms and molecules

When two atoms come within 5 nanometers of each other, there will be a slight interaction between them, thus causing polarity and a slight attraction. $\sim 1.5k_BT$ van der Waals contacts between atoms and molecules can be **thermally** broken.

Hydrogen Bonds (HB)

- Stabilizes protein structures such as α – *helix* and β – *sheet*
- $\sim 10k_BT$ HB can broken by ATP hydrolysis

Ionic Bonds

• $\sim 10k_BT$ HB can broken by ATP hydrolysis

Hydrophobic Forces

- Non-polar molecules tend to **aggregate** to reduce contacts with water molecules
- It is considered an entropic (depletion) effect
- $\sim 16k_BT$ can broken by ATP hydrolysis

Hydrophobic Forces Stabilize Folded Protein Structiures

Tertiary Structure and the "Hydrophobic Effect"

What would this protein look like when properly folded?

- Side-chains of nonpolar amino acids form
 hydrophobic core to
 shield themselves from
 water creating compact
 folded proteins.
- $\sim 16k_BT$ ATP hydrolysis can break **functional sites** of proteins

Myosin Power Stroke and Muscle Contractions

Skeletal Muscle Fibre Contraction Cycle

- Myosin power stroke of distance $\Delta x \sim 10nm$ with ATP hydrolysis energy $\sim 25k_BT$
- This can be used to estimate the number of cells in a human body~10¹⁴