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Cooperative Binding of O, to
hemoglobin

Earlier we discussed how hemoglobin (a protein in red
blood cell, RBC) that has 4 sites for binding 4 O,. They
can also bind 4 CO.,,.

The binding is cooperative, in that binding of oxygen
increases the affinity of hemoglobin for more oxygen.

Experiments (read section 4.2, Fig 4.4 and 4.5) found
that hemoglobin either bind no oxygen of 4 oxygen.
The binding is cooperative, or two state, in that it all or
nothing.

The molecular-level explanation is that the binding of
an O, causes a conformational change in the
hemoglobin protein.



The Monod-Wyman-Changeux (MW(C)
Model of Cooperative Binding

* Section 7.2.4 MWC considers a Dimoglobin
that can bind 2 oxygens.

 The dimoglobin (a protein) can be in two
states: tense (T) and relaxed (R).

* |n the absence of ligands the T state has lower
energy than R, and T is favored.

* Variable o,,, = 0,1 for T and R, respectively



The Monod-Wyman-Changeux (MW(C)
Model of Cooperative Binding

* As before 01,0, = 0,1 quantifies whether a site has a
bound oxygen

* Energy or Hamiltonian
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The Monod-Wyman-Changeux (MW(C)
Model of Cooperative Binding
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The Monod-Wyman-Changeux (MW(C)
Model of Cooperative Binding
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Conclusion:
* Without O, T state is at a higher energy of € than the R state
* Bound Ligands make T state energetically favorable



Non-Interacting Model

noninteracting model
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Pauling Model
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Adair Model
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Hierarchical Hemoglobin Models
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Random Walk

* Stochastic means having a probability
distribution that may be analyzed statistically,
but cannot be predicted precisely.

A Random Walk is a Stochastic Path
determined by steps whose length and
direction is determined by a probability
distribution.

* For large number steps the distribution is
Gaussian. This is the central limit theorem.




Random Walk

* On average, after a large number of steps, the random
walker position will be, {(x) = 0 (1D), (¥} = 0 (3D)

e After a large number of steps, N, the random walker will end
up far away from where he started: {(x?) = NL? (1D), (R?) =
2NL? (3D), where L is the average step size.



1D Random Walk: Step Size a; N steps
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See Class Notes for Detail



DNA, RNA and Proteins as a Random
Walk

* Long molecules made of repeating units are
called polymers.

* Homopolymers are polymers made up of one
type of unit. An example is polyethylene
(plastic)

* DNA, RNA and proteins are heteropolymers
since they are made up of type of units (i.e.
nucleotides, amino acids



DNA conformations as a random walk
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DNA conformations as a random walk
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DNA end-to-end distance is a Gaussian
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