Lecture of November 14: Chapter 7, Ligand Binding in the Gibb's Ensemble; MWC Model; Dimoglobin Model

Apichart Linhananta Department of Physics Lakehead University

Section 6.2.2: Solute Chemical Potential

Gibbs Free Energy of Solute (S) in Water (H₂O)

$$G_{\text{tot}}(T, p, N_{\text{H}_{2}\text{O}}, N_{\text{s}}) = N_{\text{H}_{2}\text{O}}\mu_{\text{H}_{2}\text{O}}^{0}(T, p) + N_{\text{s}}\varepsilon_{\text{s}}(T, p) + k_{\text{B}}T\left(N_{\text{s}}\ln\frac{N_{\text{s}}}{N_{\text{H}_{2}\text{O}}} - N_{\text{s}}\right).$$
(6.85)

Chemical Potential of Solute (S)

$$\mu_{\rm S} = \partial G / \partial N_{\rm S}, \qquad \mu_{\rm S} = \varepsilon_{\rm S} + k_{\rm B} T \ln \frac{c}{c_0}.$$
 (6.86)

Below is the expression of a **general chemical potential** of ith solute, μ_i with reference (0) chemical potential, μ_{i0} , and solute concentration, c, and reference concentration c₀.

$$\mu_{i} = \mu_{i0} + k_{\rm B} T \ln \frac{c_{i}}{c_{i0}},$$

The Gibbs Distribution

$$p(E_{s}^{(i)}, N_{s}^{(i)}) = \frac{e^{-\beta(E_{s}^{(i)} - \mu N_{s}^{(i)})}}{Z}, \qquad (7.15)$$

$$Z = \sum_{i} e^{-\beta(E_{s}^{(i)} - N_{s}^{(i)} \mu)}. \qquad (7.16)$$

$$\langle N \rangle = \frac{1}{Z} \sum_{i} N_{i} e^{-\beta(E_{i} - N_{i} \mu)}, \qquad (7.18)$$

Ligand-Receptor Model in the Gibb's Ensemble

- Ligand binding to receptor is considered to be a chemical process that alter the Gibbs Free Energy by the chemical potential µ.
- The State and weight change to Figure 7.10 on the **right**

Ligand-Receptor Model in the Gibb's Ensemble

See Class Note for Detail that you are expected to know for the final exam

Phosphorylation of Proteins

- Phosphorylation of a molecule is an attachment of phosphoryl group (P⁺O₃²⁻).
- Phosphorylation activates a protein, while dephosphorylation inactivate a protein.
- Phosphorylation can turn a hydrophobic portion of a protein to hydrophilic, which can induce a conformation structural change via long-range allostery.
- Students must read section 7.2.3 on Phosphorylation, including phosphorylation in signal transduction.

Phosphorylation of Proteins

STATE

protein conformational change

| 0⁻

O.

phosphoryl group

phosphate group

Cooperative Binding of O₂ to hemoglobin

- Earlier we discussed how hemoglobin (a protein in red blood cell, RBC) that has 4 sites for binding 4 O₂. They can also bind 4 CO₂.
- The **binding** is **cooperative**, in that binding of **oxygen** increases the **affinity** of **hemoglobin** for more **oxygen**.
- Experiments (read section 4.2, Fig 4.4 and 4.5) found that hemoglobin either bind **no oxygen** of **4 oxygen**. The binding is cooperative, or two state, in that it **all** or **nothing**.
- The molecular-level explanation is that the binding of an O₂ causes a conformational change in the hemoglobin protein.

- First Model of Cooperative binding considered a fictitious protein that can bind 2 oxygens.
- The model must have a **Hamiltonian** or **Energy** that make it more favorable for an oxgen to bind if there's already one oxygen bound to it.
- The model discussed in section 7.4.2 is based on the Ising Model used to study ferromagnetic materials.

Each binding site is labeled by an index i = 1			
or 2, i.e site 1 and site 2, with values:			
_ 0 no binding			
$\sigma_i = \frac{1}{1}$ one O_2 binding			
Energy (i.e. Hamiltonian) is:			
$E = \varepsilon(\sigma_1 + \sigma_2) + J\sigma_1\sigma_2$			
• The term $J\sigma_1\sigma_2$ will favor cooperative			
binding if the parameter $j < 0$, which			
makes the interacting energy $J\sigma_1\sigma_2 < 0$			
if both sites are bounded by oxygen, $\sigma_1=$			
1 and $\sigma_2 > 0$.			

• Students of physics will know that this is nothing but the Ising Model.

STATE WEIGHT $e^{-\beta(\epsilon-\mu)}$ $e^{-\beta(\epsilon-\mu)}$ $e^{-\beta(2\varepsilon+J-2\mu)}$ Each binding site is labeled by an index i = 1or 2, i.e site 1 and site 2, with values: $\sigma_i = \begin{matrix} 0 & no \ binding \\ 1 & one \ O_2 \ binding \end{matrix}$ Energy (i.e. Hamiltonian) is: $E = \varepsilon(\sigma_1 + \sigma_2) + J\sigma_1\sigma_2$ • The term $J\sigma_1\sigma_2$ will favor cooperative binding if the **parameter** j < 0, which makes the **interacting energy** $J\sigma_1\sigma_2 < 0$ if both sites are bounded by oxygen, $\sigma_1 =$ 1 and $\sigma_2 > 0$.

• Students of physics will know that this is nothing but the **Ising Model**.

STATE	WEIGHT	
	1	
	$e^{-\beta(\varepsilon-\mu)}$	
	$e^{-\beta(\varepsilon-\mu)}$	
	$e^{-\beta(2e+J-2\mu)}$	

Energy (i.e. Hamiltonian) is: $E(\sigma_1, \sigma_2) = \varepsilon(\sigma_1 + \sigma_2) + J\sigma_1\sigma_2$ Now we calculate the partition Function • $Z = \sum_{\sigma_1, \sigma_2 = 0, 1} exp - \beta(E(\sigma_1, \sigma_2) - N_S \mu)$, where $N_S = \sigma_1 + \sigma_2$ is the number of **bound oxygen**.

 $\mathcal{Z} = \underline{1} + \underline{e^{-\beta(\varepsilon-\mu)} + e^{-\beta(\varepsilon-\mu)}} + \underline{e^{-\beta(2\varepsilon+J-2\mu)}}.$

unoccupied single occupancy both sites occupied

$$\langle N\rangle = \frac{2\mathrm{e}^{-\beta(\varepsilon-\mu)}+2\mathrm{e}^{-\beta(2\varepsilon+J-2\mu)}}{1+\mathrm{e}^{-\beta(\varepsilon-\mu)}+\mathrm{e}^{-\beta(\varepsilon-\mu)}+\mathrm{e}^{-\beta(2\varepsilon+J-2\mu)}}.$$

Assignment 7, problem 7.3

- Section 7.2.4 MWC considers a Dimoglobin that can bind **2 oxygens**.
- The dimoglobin (a protein) can be in two states: tense (T) and relaxed (R).
- In the absence of ligands the T state has lower energy than R, and T is favored.
- Variable $\sigma_m = 0.1$ for T and R, respectively

- As before $\sigma_1, \sigma_2 = 0,1$ quantifies whether a site has a bound oxygen
- Energy or Hamiltonian

$$E(\sigma_m, \sigma_i) = (1 - \sigma_m)\varepsilon_T \sum_{i=1}^2 \sigma_i + \sigma_m \left(\varepsilon + \varepsilon_R \sum_{i=1}^2 \sigma_i\right)$$

• Partition Function

$$Z = \sum_{\sigma_m = 0.1;, \sigma_i = 0, 1} exp - \beta(E(\sigma_m, \sigma_i) - N_s \mu)$$

 $\mathcal{Z} = 1 + 2e^{-\beta(\varepsilon_{\mathrm{T}} - \mu)} + e^{-\beta(2\varepsilon_{\mathrm{T}} - 2\mu)}$ T terms $+ e^{-\beta\varepsilon}(1+2e^{-\beta(\varepsilon_{\mathrm{R}}-\mu)}+e^{-\beta(2\varepsilon_{\mathrm{R}}-2\mu)}).$ (7.35)R terms $\langle N \rangle = \frac{2}{\pi} [x + x^2 + e^{-\beta \varepsilon} (y + y^2)],$ $\Delta \varepsilon = -4k_{o}T$ occupancy $\Delta \varepsilon = -2 k_{\rm R} T$ $\Delta \varepsilon = 0$ $x = exp(-\beta(\varepsilon_T - \mu))$ 0.5 $y = exp(-\beta(\varepsilon_R - \mu))$ 0 0.5 0 $\Delta \varepsilon = \varepsilon_R - \varepsilon_L < 0$ dimensionless concentration

Conclusion:

- Without O_2 T state is at a higher energy of ε than the R state
- Bound Ligands make T state energetically favorable