# PHYS 1211 F2020

Chapter 2: 1D Kinematic

September 9 and 11, 2020

### Scalar and Vectors

#### Scalars have magnitudes but no direction. Examples are:

- Mass
- Speed
- Temperature

#### Vectors have magnitude and direction. Examples are:

- Weight
- Velocity
- Force

### Scalar and Vectors

Adding scalars: Three rocks of mass  $M_1 = 10kg$ ,  $M_2 = 20kg$ ,  $M_3 = 5kg$ 

- What is the Total Mass?
- $M = M_1 + M_2 + M_3 = 35kg$

Adding Vectors: Man runs 20 m right then he walks 50 m left.

• What is his displacement? i.e. What is the change in his position?



His displacement is -30m

## Adding Vectors in three dimensions (3D)

- A Vector is represented by an arrow, which specifies its direction
- The magnitude corresponds to its length.
- A vector is usually denoted by a letter with an arrow on top.



Method for adding two vectors:

- 1. Move  $\vec{A}$  without rotating
- 2. Move **tail** of *B*, without rotating, to **head** of  $\vec{A}$
- 3. Draw arrow from tail of  $\vec{A}$  to head of  $\vec{B}$  to find  $\vec{C}$

Position, x, displacement,  $\Delta x$ , average velocity,  $v_{avg}$ , in One Dimension (1D)



**Displacement**  $\Delta x = x_2 - x_1$  defined for time interval  $t_1 < t < t_2$ 

Average Velocity 
$$v_{avg} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$
 SI unit  $\frac{m}{s}$  or  $m \cdot s^{-1}$ 

 $\Delta$  stands for change



$$v_{avg} = \frac{x_3 - x_1}{t_3 - t_1} = \frac{-2.0m - 1.3m}{2.0s - 0.2s} = -1.83\frac{m}{s}$$

$$v_{avg} < 0$$
, le

• 
$$s_{avg} = \frac{distance\ traveled}{total\ time}$$
, compare this to textbook equation 2.1.3

• Example: A bird travel the path below:

$$d_{2} = 25m$$

$$\Delta t_{2} = 9.0s$$

$$d_{3} = 12m$$

$$\Delta t_{3} = 5.0s$$

$$\Delta t_{3} = 5.0s$$

$$Calculation of average speed$$

$$s_{avg} = \frac{d_{1} + d_{2} + d_{3}}{\Delta t_{1} + \Delta t_{2} + \Delta t_{3}}$$

$$s_{avg} = \frac{22m + 25m + 12m}{11s + 9.0s + 5.0s} = 2.36\frac{m}{s} = 2.4\frac{m}{s}$$

Comparing average velocity,  $v_{avg}$ , and average speed,  $s_{avg}$ , in One Dimension (1D)

A runner runs 100m in 10 s, then retraced his steps to origin in 11s

• What is his <u>average velocity</u> for the **whole 21s period**?

• Zero! 
$$v_{avg} = \frac{\Delta x}{\Delta t}$$
 and his displacement is  $\Delta x = 0$ 



Instantaneous velocity, v, in one dimension (1D): A Calculus Argument

Average Velocity 
$$v_{avg} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

• In the limit of very small time interval,  $\Delta t \rightarrow 0$ , which also means  $\Delta x \rightarrow 0$ , which gives

• 
$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

- Instantaneous velocity,  $v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$
- $\frac{dx}{dt}$  is the derivative of the position x(t) with respect to (wrt) time, t.
- Henceforth, in this course, velocity, v, means instantaneous velocity.

#### Instantaneous velocity, v, in one dimension (1D): An example

A sprinter is running the 100-m dash. He completes it in 10s. The coach uses a device determines his position x(t) as a function of time t:

$$x(t) = \left(1\frac{m}{s^2}\right)t^2$$

Calculate his velocity at t= 0s, 1s, 2s, and at the instant he finish the sprint.

- Using differential Calculus:  $v = \frac{dx}{dt} = \frac{d}{dt} \left( \left( 1 \frac{m}{s^2} \right) t^2 \right) = \left( 1 \frac{m}{s^2} \right) 2 \times t^{2-1} = \left( 2 \frac{m}{s^2} \right) t^2$
- At t = 0s,  $v(0s) = \left(2\frac{m}{s^2}\right) \times 0s = 0$

• At t = 1s, 
$$x_1 = x(1s) = 1m$$
,  $v(1s) = \left(2\frac{m}{s^2}\right) \times 1s = 2\frac{m}{s}$ 

Average velocity  
$$v_{avg} = \frac{100m}{10s} = 10.\frac{m}{s}$$



Position $x_0 = 0$  $x_1 = 1.0m$  $x_2 = 4.0m$  $x_3 = 100m$ time $t_0 = 0$  $t_1 = 1s$  $t_2 = 2.0s$  $t_3 = 10.0s$ 

### Graphical Representation of 1D velocity



Average Velocity for interval RS: <u>Slope</u> of <u>secant</u> joining <u>RS</u>  $v_{avg} = \frac{\Delta x}{\Delta t} > 0$ positive slope

**Velocity** (i.e. instantaneous velocity) is the **slope** of the **tangent** at the **instant** (time):

- At point R slope of tangent is positive, and velocity is positive, v > 0
- At point S slope of tangent is **negative**, and velocity is **negative**, v < 0

#### Graphical Representation of 1D velocity



At point P: Velocity,  $v_P = ?$ At point Q: Velocity,  $v_Q = ?$ 

#### Simple Question

• While driving a car at 90km/h, how far do you move while your eyes shut for 0.50s during a hard sneeze?

• By definition, 
$$v_{avg} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

• 
$$\Delta x = v_{avg} \Delta t$$
  
•  $v_{avg} = 90 \frac{km}{hr} \times \frac{1000m \cdot km^{-1}}{3600s \cdot hr^{-1}} = 25 \frac{m}{s}$   
•  $\Delta x = v_{avg} \Delta t = 25 \frac{m}{s} \times 0.5s = 12.5m \rightarrow 13m$ 

#### Average and Instantaneous acceleration in one dimension (1D)



Acceleration is the rate of change of velocity

- Average Acceleration  $a_{avg} = \frac{v_2 v_1}{t_2 t_1} = \frac{\Delta v}{\Delta t}$ , unit  $\frac{m}{s^2}$
- In the limit of very small time interval,  $\Delta t \rightarrow 0$ ,  $\Delta x \rightarrow 0$ , which gives
- Instantaneous acceleration,  $a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$
- Henceforth, in this course, acceleration means instantaneous acceleration



#### Acceleration by v vs.t graph

• Average Acceleration,  $a_{avg}$ , for the PQ interval is <u>slope</u> of the <u>secant</u> joining PQ

• 
$$a_{avg} = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1}$$

- Acceleration, *a*, is the <u>slope</u> of the <u>tangent</u> at that point (i.e. at that time)
- Example is at point P



# Acceleration by *v vs.t* graph, speeding up and slowing down

• Example of acceleration by graph



v > 0

**Slowing down** 

 If signs of acceleration, a, and velocity, v, are the different, then object is slowing down

#### Kinematics with Calculus

<u>Question</u> Let  $x = (At^2 - bt^3)$  be the position of a particle moving in one dimension (1D), where  $A = 2.2 \frac{m}{s^2}$ , and  $b = 1.1 \frac{m}{s^3}$ 

A) Find the position of the particle at *t* = 1.2 *s* and *t* = 2.5 *s*, and hence find the **average velocity** for the time interval *t* = 1.2 *s* and *t* = 2.5 *s*.

At 
$$t = 1.2 s$$
,  $x(1.2s) = 2.2 \frac{m}{s^2} (1.2s)^2 - 1.1 \frac{m}{s^3} (1.2s)^3 = 1.27m$   
At  $t = 2.5 s$ ,  $x(2.5s) = 2.2 \frac{m}{s^2} (2.5s)^2 - 1.1 \frac{m}{s^3} (2.5s)^3 = -3.43m$   
 $v_{avg} = \frac{x(2.5s) - x(1.2s)}{2.5s - 1.2s} = -3.62 \frac{m}{s}$   
Significant Figure 2.12 = -3.62  $\frac{m}{s}$  255 but is 355 or 455 ok for test

Significant Figure?  $v_{avg} = -3.62 \frac{m}{s}$ , 2SF, but is 3SF or 4SF ok for test!

#### Kinematics with Calculus: Part B

<u>**Question**</u> Let  $x = (At^2 - bt^3)$  be the position of a particle moving in one dimension (1D), where  $A = 2.2 \frac{m}{s^2}$ , and  $b = 1.1 \frac{m}{s^3}$ 

B) Find the velocity (i.e. instantaneous velocity) at t = 0 and t = 2.2 s Find Derivative of position with time

$$v(t) = \frac{dx}{dt} = \frac{d(At^2 - bt^3)}{dt} = 2A \times t^{2-1} - 3b \times t^{3-1} = 2At - 3bt^2$$

Above equation give velocity at arbitrary time, t.

Velocity at specific time is found by substituting the specific time into equation.

At 
$$t = 0 s$$
,  $v(0s) = 2 \times 2.2 \frac{m}{s^2} (0s) - 3 \times 1.1 \frac{m}{s^3} (0s)^2 = 0$   
 $t = 2.2 s$ ,  $v(2.2s) = -6.29 m/s$ 

#### Kinematics with Calculus: Part C and D

<u>Question</u> Let  $x = (At^2 - bt^3)$  be the position of a particle moving in one dimension (1D), where  $A = 2.2 \frac{m}{s^2}$ , and  $b = 1.1 \frac{m}{s^3}$ 

C) Find the **average acceleration** for time interval *t* = 0 *s* and *t* = 2.2 *s*.

Use Result of part B,  $a_{avg} = \frac{v(2.2s) - v(0s)}{2.2s - 0s} = -2.86 \frac{m}{s^2}$ D) Find Acceleration at t = 0 s and t = 2.2 s. From part B,  $v(t) = \frac{dx}{dt} = 2At - 3bt^2$ Acceleration at arbitrary time t,  $a = \frac{dv}{dt} = 2A \times 1t^{1-1}3b \times 2 \times t^{2-1} = 2A - 6bt$ At t = 0,  $a(0) = 2A - 6b \times 0 = 2 \times 2.2 \frac{m}{s^2} = 4.4 \frac{m}{s^2}$ At t = 2.2s,  $a(2.2s) = 2 \times 2.2 \frac{m}{s^2} - 6 \times 1.1 \frac{m}{s^3} \times 2.2s = -10.12 \frac{m}{s^2}$ 



A great sprinter **accelerates** from rest at  $2.5m \cdot s^{-2}$  until reaching a top speed of  $15m \cdot s^{-1}$ . He continues at this speed until he covers 100 m. How long does it take him to run 100m?

- 1. First find the time it takes him to reach top speed!
  - Use equation 2-41,  $v_1 = v_0 + at_1$
  - $15m \cdot s^{-1} = 0 + 2.5m \cdot s^{-2} \times t_1 \rightarrow t_1 = 6s$
  - Find distance traveled during this time
  - Use equation 2-42,  $x_1 x_0 = v_0 t_1 + \frac{1}{2} a t_1^2 = 45m$
- 2. Find time to travel rest of distance
- Rest of distance is  $x_2 x_1 = 100m 45m = 55m$
- Since he runs at  $15m \cdot s^{-1}$ , it will take  $t_2 = \frac{55m}{15m \cdot s^{-1}} = 3.67s \rightarrow t_1 + t_2 = 9.67s$

### 1D Kinematics Question

In *x vs. t* plot above, for which point (I, II, III, IV or V) is the object **moving right**, and **slowing down**?

Explain your answers, briefly!

<u>ANSWER</u>: III

Slope must be positive v > 0: I, II or III

Only at point III is the slope decreasing, meaning that a < 0

When the **signs** of v and a are **opposite**, the object is **slowing down**.



### 1D Kinematics Question

A motorist makes a trip of 180 miles. For the first 90 miles she drives at a constant speed of 30 mph. At what constant speed must she drive the remaining distance if her average speed for the total trip is to be 40 mph:

a) 50 mph b) 55 mph c) 60 mph d) 45 mph e) 52.5 mph <u>Solution:</u> C

Definition of average speed:  $s_{avg} = \frac{Total \ Distance}{Total \ Time} = \frac{180 \ miles}{t_1 + t_2} = 40 \ mph$ Total Time =  $t_1 + t_2 = 4.5 hr$ 

First 90 miles: 
$$t_1 = \frac{90miles}{30mph} = 3hr \rightarrow t_2 = 1.5hr$$
  
Second 90 miles: speed  $s = \frac{90miles}{1.5hr} = 60mph$ 

### Section 2.6 Free Fall

- A small rock falls (accelerates) as quickly as a large rock.
- See the Galileo "Leaning tower of Pisa" experiments in the 1590s
- Without air, a feather would fall as quickly as a hammer!



#### Section 2.6: Free Fall

- An object near the earth's surface falls towards the ground with an at a rate of  $g = 9.8 \frac{m}{s^2}$ .
- From the textbook: The constant-acceleration equations we developed in Section 2.4 also apply to free fall near Earth's surface because the acceleration is a constant g. They apply for an object in vertical flight, either up or down (as long as we can neglect the effects of air). However, note that for free fall:
  - 1. The directions of motion are now along a vertical y axis instead of the x axis, with the positive direction of y upward. (This is important for later chapters when combined horizontal and vertical motions are examined.)
  - 2. The free-fall acceleration is negative—that is, downward on the y axis, toward Earth's center—and so the acceleration has the value -g in the constant-acceleration equations. (*Heads up:* The symbol g is a quick way of writing the positive number 9.8 m/s<sup>2</sup>. Indicating the downward direction with a minus sign is separate.)



## Free Fall Kinematic Equation: Apple thrown straight up at speed $v_0$ $v_{max} = v_{max}$

- Vertical coordinate, y(t), with up as positive (+)
- Origin  $t = t_0 = 0$ ,  $y_0 = 0$ , velocity  $v = v_0$
- Arbitrary time t, position y(t), velocity v(t)Free Fall Equations

$$v = v_0 - gt \quad (2-41)$$
  

$$y - y_0 = v_0 t - \frac{1}{2}gt^2 \quad (2-42)$$
  

$$v^2 = v_0^2 - 2g(y - y_0) \quad (2-43) \text{ Important points}$$
  

$$y - y_0 = \frac{1}{2}(v + v_0)t \quad (2-44) \quad \text{1. The apple is a the way up, the way up, the apple is a the way up, the way up, the apple is a the way up, the w$$



- The apple is at the same height h twice, first on the way up, then on the way down
- 2. The above is an example of a **motion diagram**

# Free Fall Example: Apple thrown straight up at speed $v_0$ $v_{max} = 0$

Example: An Apple is thrown up with a speed of 3.0 m/s. **A)** Draw the path of the ball **B)** Calculate the height above the initial position when the speed of the ball is 1.0 m/s. **C)** Calculate the time when the speed of the ball is 1.0 m/s. **D)** Find Maximum height

<u>Solution</u>

B) Use 2.43,  $v^2 = v_0^2 - 2g(y - y_0) \rightarrow (1.0m \cdot s^{-1})^2 = (3.0m \cdot s^{-1})^2 - 2 \times 9.8m \cdot s^{-2}(y - y_0)$ Using  $y_0 = 0, y = 0.408m = 0.41m$ C) Use 2.41,  $v = v_0 - gt \rightarrow (1.0m \cdot s^{-1}) = 3.0m \cdot s^{-1} - 9.8m \cdot s^{-2} \times t \rightarrow t = 0.204s$   $\cdot 0n$  way down,  $-1.0m \cdot s^{-1} = 3.0m \cdot s^{-1} - 9.8m \cdot s^{-2} \times t \rightarrow t = 0.408s$ D) Use 2.43, with final velocity being zero!  $v^2 = v_0^2 - 2g(y - y_0) \rightarrow 0 = (3.0m \cdot s^{-1})^2 - 2(9.8m \cdot s^{-2})y_{max}$  $y_{max} = 0.46m$ 

*Y*max  $v = v_0 - gt \quad (2-41)$  $y - y_0 = v_0 t - \frac{1}{2}gt^2$  (2-42)  $v^2 = v_0^2 - 2g(y - y_0)$  (2-43)

### A tossed pebble problem

A 2-kg pebble is on top of a 14.7 m high cliff. It is **thrown** straight up with a speed of  $9.8m \cdot s^{-1}$ . A) Draw a motion diagram of the pebble till it hits the ground 14.7 m below. B) Find the time it takes for the pebble to hit the ground. C) Find velocity at bottom.

- Use one of:
- $v = v_0 gt$  (2-61) •  $y - y_0 = v_0t - \frac{1}{2}gt^2$  (2-62)
- $v^2 = v_0^2 2g(y y_0)$  (2-63)

#### **Solution Part B**



 $y_{max}$ 

# A tossed pebble problem: The meaning of **negative time** solution.

A 2-kg pebble is on top of a 14.7 m high cliff. It is **thrown** straight up with a speed of  $9.8m \cdot s^{-1}$ . A) Draw a motion diagram of the pebble till it hits the ground 14.7 m below. B) Find the time it takes for the pebble to hit the ground. C) Find velocity at bottom.

• 
$$v = v_0 - gt$$
 (2-61)  
•  $y - y_0 = v_0t - \frac{1}{2}gt^2$  (2-62)

#### **Solution Part B**

 $y - y_0 = v_0 t - \frac{1}{2}gt^2 \rightarrow t^2 - 2t + 3 = 0 \rightarrow (t - 3s)(t + 1s) = 0$ Solution : t = 3s, -1sPositive time:  $t = 3s, v = 19.6m \cdot s^{-1}$ Negative Time: t = -1s, see extrapolation y = -14.7mVelocity:  $v = v_0 - gt = 9.8m \cdot s^{-1} - (9.8m \cdot s^{-2}) \times 3s = -19.6m \cdot s^{-1}$  t = -1s corresponds to scenario where the pebble is thrown straight up
with a speed of 19.6  $\frac{m}{s}$  at time t = -1s.

