P1211 Pre-Midterm Lecture

Friday Oct 30, 2020

A Multiple choice

- A 40-N crate rests on a rough horizontal floor. A 12-N horizontal force is then applied to it. If the coefficients of friction are $\mu_s = 0.5$ and $\mu_k = 0.4$, the magnitude of the frictional force on the crate is:
- A) 8N B) 12 N C) 16N D) 20 N E) 40 N
- F_s,max = 40N x 0.5 = 20 N so cannot overcome static friction

So force is 12N

Problem 2 as a short answer questions

In the diagram below, block A (100kg) is on a 30° incline is connected by a **frictionless** pulley to block B (50 kg) on a 53.1° incline. (a) Which way will the system move when released from rest. (b) What is the acceleration of the blocks? (c) What is the tension in the cord?

<u>Short Answers Format</u> In the diagram above, block A (100kg) is on a 30° incline is connected by a **frictionless** pulley to block B (50 kg) on a 53.1° incline.

A)Which way will the system move when released from rest? Briefly explain using physics concepts;

B) What are the forces acting on 50kg mass and what are their directions?

C) Use Newton's second law to find equation relating the force of part B to the acceleration;

D) What are the forces acting on 100kg mass and what are their directions?

E) Use Newton's second law to find equation relating the force of part D to the acceleration;

F) Find tension T and acceleration, a.

Variables:

Tension T; acceleration, a Weight on 50 kg , F_g50 Weight on 100 kg, F g100, Normal Force F N

Problem 2 as a short answer questions: Part A and B and C.

<u>Short Answers Format</u> In the diagram below, block A (100kg) is on a 30° incline is connected by a **frictionless** pulley to block B (50 kg) on a 53.1° incline.

A)Which way will the system move when released from rest? Briefly explain using physics concepts;

50 kg x g x sin 53.1 – 100 kg x g x sin 30 = -10g < 0. Hence 100 kg will slide down left incline

B) What are the forces acting on 50kg mass and what are their directions?

Gravity F_g50 down. And T up right incline, and normal force, F_N, perpendicular to incline

C) Use Newton's second law to find equation relating the force of part B to the acceleration;

 $-M_{50}$ g sin 53.1 + T = + M_{50} x a

Variables:

Tension T; acceleration, a Weight on 50 kg , F_g50 Weight on 100 kg, F_g100, Normal Force F_N

Problem 2 as a short answer questions: Part D and E and F.

Short Answers Format In the diagram below, block A (100kg) is on a 30° incline is connected by a **frictionless** pulley to block B (50 kg) on a 53.1° incline.

D) What are the forces acting on 100kg mass and what are their directions?

Gravity F_g100 down, T up left incline and normal force, F_N, perpendicular to incline

E) Use Newton's second law to find equation relating the force of part D to the acceleration;

 $M_{100} \text{ g sin } 30 - \text{T} = M_{100} \text{ a}$

F) Find tension T and acceleration, a.

Add part C and E: M_100 x 0.5g - M_50 x 0.8 g = (M_100 + M_50) a, a = 0.65 m s^-2 Use part E, T = M_100 (0.5g - a) = 425 N

Variables:

Tension T; acceleration, a Weight on 50 kg , F_g50 Weight on 100 kg, F_g100, normal force F_N

Problem 4, Practice

In the diagram, box $1(M_1=2kg)$ lies on **frictionless incline** of 53.1°, and is **moving up** the incline with acceleration $a = 1.04 \text{ m} \cdot \text{s}^{-2}$. Box 1 is connected by an ideal rope through a frictionless pulley to box 2 ($M_2=7kg$), which rests on a 36.9° incline with friction. Block 2 is acted on by a horizontal force of magnitude $F_A = 5N$. The **tension** (T = ?) and **kinetic coefficient** (μ_k) are **unknown**

A) Draw a free-body-diagram (FBD) of all forces on block 1 (M_1), which includes the direction of its acceleration. **Calculate** the **tension**, T

Problem 4, Practice

In the diagram, box $1(M_1=2kg)$ lies on **frictionless incline** of 53.1° , and is **moving up** the incline with acceleration $a = 1.04 \text{ m} \cdot \text{s}^{-2}$. Box 1 is connected by an ideal rope through a frictionless pulley to box 2 ($M_2=7kg$), which rests on a 36.9° incline with friction. Block 2 is acted on by a horizontal force of magnitude $F_A = 5N$. The **tension** (T = ?) and **kinetic coefficient** (μ_k) are **unknown**

Draw a free-body diagram (FBD) of all forces acting on block 2 (M_2). Use this to determine the **magnitude** and **direction** of the friction force $f_{k,2}$, acting on block 2. Calculate the **coefficient** of **kinetic friction**, μ_k , between surfaces of block 2 and incline

Problem 5: Part A, B and C

Part A to C is from 2019 midterm 2. Below block A has a mass of 8.00 kg and block B has mass 4.00 kg. Block A is moving right with a **speed** of v = 3.0 m/s to the **right**. A force F = 7 N is applied at 38° to the horizontal. Friction coefficients of blocks and the table: $\mu_k = 0.14$, $\mu_s = 0.26$.

- A) Draw a free-body diagram of **Block B**, which includes the **five** forces acting on it, and its acceleration, a. Use Newton's law to derive an equation that relates two **unknowns**: **tension** of the rope, T; **acceleration**, a.
- B) Draw a free-body diagram of Block A, which includes the four forces acting on it, and its acceleration, a. Use Newton's law to derive an equation that relates two unknowns: the tension of the rope, T, and the acceleration, a.

Solve the equations from part A) and B) to find T and a. How long does it take Block B travel 0.8 m to reach the edge of the table?

Problem 5: Part D

Part A to C is from 2019 midterm 2. Below block A has a mass of 8.00 kg and block B has mass 4.00 kg. Block A is moving right with a **speed** of $\mathbf{v} = 3.0 \text{ m/s}$ to the **right**. A force F = 7 N is applied at 38° to the horizontal. Friction coefficients of blocks and the table: $\mu_k = 0.14$, $\mu_s = 0.26$.

D) Calculate the total work done on the system and find the speed after it travels 0.8 m.

From earlier, T = 4.09N and $a = -0.86 \frac{m}{s^2}$ and $f_{kB} = F_N \mu_k = 34.9N \times 0.14 = 4.88N$ $F_{\chi} = F \cos 38^{\circ} = 5.5N$, $f_{kA} = F_N \mu_k = 10.97N$ Block B Block A $W_B = \Delta K = \frac{1}{2}m_B v_f^2 - \frac{1}{2}m_B v_i^2 \rightarrow v_f = 2.76\frac{m}{s}$ Block A $W_A = T \times 0.8m - f_{kA} \times 0.8m = -5.504J$ $W_A = \Delta K = \frac{1}{2}m_A v_f^2 - \frac{1}{2}m_A v_i^2 \rightarrow v_f = 2.76\frac{m}{s}$ Block A M_Bg System A + B + massless rope $W_A + W_B = -8.28J = \frac{1}{2}m_A v_f^2 + \frac{1}{2}m_B v_f^2 - \frac{1}{2}m_A v_i^2 - \frac{1}{2}m_B v_i^2 \rightarrow v_f = 2.76\frac{m_B}{s}$