PHYS 1211 F2020
Lecture Wednesday November
4, 2020

Chapter 7

Introduction to Work by spring and variable force



Calculus for 15t year physics: Derivatives and
Indefinite Integrals

* Consider a function y of a variable x, y(x)
* Derivative of y wrt x, Z—i’ =y/

d d(x? _
* Example, y = x2 » = = 0%) _ oxx2=1 = 24
dx dx

* Indefinite integral, [ y dx = z(x), where y(x) and z(x) are functions of x.

* The function z(x) is the anti-derivative of the function y(x): Z—)ZC = y(x)

. Exampley=x—>fydx=fxdx=%x2=Z(x)

S 1 2 _, 4z az¥*) 1 2—1
°S|nce|fz(x)=5x - = =52><x =X



Calculus for 15t year physics: Definite Integrals

* Definite integral f;fy(x)dx is evaluated between the limits, x; <
l
X < Xf

* The answer of a definite integral is a numerical value
X

[T y()dx = 20 = 2(x) — 2(x)

* Exampley =x - [ydx = [x dx =%x2 = z(x)

x 1 1
. f;lfx dx = [Z(x)]x{ = z(x;) — z(x;) = ~Xf — X}



Chain Rule

Let x be a function of t, x(t)

If v is a function of x, y(x) then y is also a function of t, y(t)

. d . d dy dx
Now consider —y, the chain rule states = = =%
dt dt dx dt

Example, x(t) = t%,y(x) = x? = (t?)? = t* = y(t)

. d _
Since y(t) = t* > d—{ = 4xt*1 = 4¢3
d 1
e Alsox(t) =t2 » = =2xt2"1 =2¢

dt ;
, : i d dy d d(x? _
* Noting y = x?, use the chain rule 2 = 22 (L)XZt = 2Xx?71x2t = 4xt

dt dx dt  dx
« But x(t) = t?
dy dydx
dt  dx dt

 This means = 4xt 2 4t3



Advance Differential Calculus

* Let x be a function of t, x(t)

* If y is a function of x, y(x) theny is also a function of t, y(t)

. d dy dx
e The chain rule states =~ = ayar
dt  dx dt

* Now consider the definite integral fxf L dx

* We can change the variable of mtegratlon form xto ... sayy by doing the
following

dy d
fxfy(x) dx = fylf di’ dx dx, where the integration limits are now y(x;) =

yi and y(xy) = ¥y
* Though | have not proven this, —dx = dy

fxfdyd _f;/fdydx
l

“dx dx
fyf dy,where — must be expressed as a
dx dt dt

fuhction of y



The Spring Force

Figure below shows a spring in an equilibrium (relaxed) state:
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If a rightward force is applied to the block that stretches the spring, x >
O (right), the spring applies a leftward restoring spring force, Fs: F, < 0
pulls the block.

Hooke’s Law: Spring force F, = —kx, x is displacement of spring, k is
the spring constant in unit of N/m



Work by a spring

Work by variable spring force in 1D that changes the compression/stretching of
spring from an initial x; to final x¢.

Divide into infinitesimal portion, Ax;, where the subscript j denotes the jt" portion
of the path. e

Work by spring, dWs = FyjAx; > 0,F,; < 0,Ax; <0 —

It is assumed that the infinitesimal portion, ij, is straight, and the force is
constant, £y ;.

The total work done by spring on the path is found by summing all j* portions:

I/VS — ZdW — Z]Fx]Ax]

This gives W, = f;f E.(x)dx = — f;f kx dx =?

i

1
What is the definite integral, ka dx =? ka dx = Ekxz
X
Definite integral, total work by spring, W, = — f;f kx dx = [_%kaI !

Xi

1 1 1 1
W= (~zkf) = (-3t ) = g kxt 5 kf



Example spring

A typical spring constant is k = 400% Below such a spring is being compressed from equilibrium, at

= 0, by a m = 8 kg box, moving at v1
A) Find maximum compression, x-.

9 —. Assume no friction.

.0
.0
*

B) Find the speed, v3, when the box is at the éqwllbrlum at x3 = 0.

v =
—1 5 U2 0

VWAV

x1=0 X2

v, =0

ﬁmmnmw

x3 =0 X2

Part K-, )
Work by §'pr.1.ng from x; to x,, Wy, = —k\xz — —kx2

N 2y R
Work-Energy, WIZ,‘_ ——kxz AK = Zm\(g val

m "".‘0.. 8k g 9 m 1 2 7
Xo = |[—V1 =., X9—=1.2/mMm
>Nkt 400Nm1 T s

Part B: Use work-energy theorem”i’m.m 2to3

‘e
‘e
3

k 400Nm-1 m
X, = x1.27m = 8.98 —

8kg S




Work by general variable force in 1D

Consider a object moving in 1D acted on by a general variable force as shown
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Divide into very smali‘paths each of length, Ax, where at position x; the

.

average force is Fj;}wg, which contributes work AW; = F; ;,,4A%
The total work done is W~ X W; = X, Fj qpgAx
In the calculus limit of very small Ax 2 0, the total work done is
f
W = f F(x)dx

Xi



Work-Energy Theorem by a general variable force in 1D

The work doneis W = f;fF(x)dx.
—_— vi ' > vf

: F
F(x;) - (xf)-

Xi Xf
The Use Newton’s second law, F = ma - W = f;f madx
l

.. ) ) dv dv
Divide Accelerationis a = — — adx = —dx

dt
Note velocity v is a function of position x and time t.
. dv dv dx dv dx
Use the chain rule, — = = v—, where— = v
dt dx dt dx dt
dv dv
adx =—dx =v—dx = vdv
d dx,
Xf vf 1 T 1
W = j madx = mj vdv = —mvzl =-mvf —-mv; = K — K;
2 2 2
X Vi ()

Work done W = AK change in kinetic energy



