Useful Equations

Kinematics $x = x_0 + v_{0x}t + (1/2)a_xt^2$, $v_x = v_{0x} + a_xt$, $v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$, $v_x = dx/dt$; for free-fall problem substitute y for x, and a = -g. $a_x = dv_x/dt$; $\vec{v} = v_x\hat{i} + v_y\hat{j} + v_z\hat{k}$;

 $\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$; average speed $s_{avg} = \text{(total distance)/(total time)}$; average velocity (x-com) $v_{avg,x} = (x_2 - x_1)/(t_2 - t_1)$, average acceleration (x-com) $a_{avg,x} = (v_{2x} - v_{1x})/(t_2 - t_1)$. Newton's

Laws $\vec{F}_{net} = \sum \vec{F}_i = 0$ (Object in equilibrium); $\vec{F}_{net} = m\vec{a}$ (Nonzero net force); **Weight:**

 $F_g = mg$, $g = 9.8m / s^2$; Centripetal acceleration $a_{rad} = \frac{v^2}{r}$;

Friction $f_s \le \mu_s F_N$, $f_k = \mu_k F_N$. Hooke's Law $F_x = -kx$. Work and Energy $W = \vec{F} \bullet \vec{d} = (F \cos \theta) d = F_{\parallel} d$; $W^{net} = \Delta K = (1/2) m v_f^2 - (1/2) m v_i^2$ (valid if W^{net} is the net or total work done on the object); $W^{grav} = -mg(y_f - y_i)$ (gravitational work), $W^{el} = -((1/2)kx_f^2 - (1/2)kx_i^2)$ (elastic work)

Conservation of Mechanical Energy (only conservative forces are present) $E_{mech} = U + K$ $W^{net} = -\Delta U = -(U_2 - U_1) = \Delta K = K_2 - K_1, U_1 + K_1 = U_2 + K_2, U_{grav} = mgy, U_{el} = (1/2)kx^2$ Also $\Delta E_{mech} = \Delta U + \Delta K = (U_f - U_i) + (K_f - K_i) = 0 \rightarrow \Delta K = -\Delta U$

CONSERVATION of **ENERGY**:

Non-Conservative Forces: with **no friction** $W_{ext} = \Delta E_{mech}$ (W_{ext} work done by **external**), with $\Delta E_{mech} = \Delta U + \Delta K = (U_f - U_i) + (K_f - K_i)$; with **friction** $W_{external} = \Delta E_{mech} + \Delta E_{th}$, $\Delta E_{th} = f_k$, d is **magnitude** of **displacement**.

Work due to variable force 1D: $W = \int_{x_i}^{x_f} F_x dx \equiv \text{area under } F_x \text{ vs. } x$, from $x = x_i \text{ to } x_f$

Momentum: $\vec{P} = m\vec{v}$, Impulse: $\vec{J} = \int_{t_1}^{t_2} \vec{F} dt = \vec{F}_{av} (t_2 - t_1)$, Impulse-Momentum $\vec{J} = \Delta \vec{P} = \vec{P}_2 - \vec{P}_1$

Newton's Law in Terms of Momentum $\vec{F}_{net} = d\vec{p} / dt$. For $\vec{F}_{net} = 0$, $d\vec{p} / dt = 0$ gives momentum conservation: $\vec{P} \equiv \text{constant}$. Rotational Kinematics Equations: $\omega_{avg} = (\theta_2 - \theta_1) / (t_2 - t_1)$,

$$\alpha_{avg} = (\omega_2 - \omega_1)/(t_2 - t_1)$$
 For $\alpha_z = \text{constant}$, $\omega = \omega_0 + \alpha t$, $\theta = \theta_0 + \omega_0 t + (1/2)\alpha t^2$,

 $\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$ Linear and angular variables: $s = r\theta$, $v = r\omega$, $a_{tan} = R\alpha$ (tangential),

 $a_{rad} = v^2 / r = \omega^2 r$ (radial) Moment of Inertia and Rotational Kinetic Energy $I = \sum_{i=1}^{N} m_i r_i^2$,

 $K_{rot} = (1/2)I\omega^2$. Center of Mass (COM) $\vec{r}_{com} = \sum m_i \vec{r}_i / M$, $M = \sum m_i$; $\vec{v}_{com} = \sum m_i \vec{v}_i / M$;

 $\underline{\vec{a}}_{com} = \sum m_i \vec{a}_i / M$. Newton's Second Law for System: $\vec{F}_{net} = M \vec{a}_{com}$, where \vec{F}_{net} is the net external force acting on the system of N particles. Torque and Newton's Laws of Rotating Body: rigid body $\tau = Fr_{\perp}$, $\vec{\tau}_{net} = \sum \vec{\tau}_i^{ext} = I\alpha$, r_{\perp} -moment arm about axis; point $\vec{\tau} = \vec{r} \times \vec{F}$ about origin O.

Combined Rotation and Translation of a Rigid Body $K = (1/2)Mv_{com}^2 + (1/2)I_{com}\omega^2$, $\vec{F}_{net} = M\vec{a}_{com}$, $\vec{\tau}_{net} = I_{com}\vec{\alpha}$. Rolling without slipping $s = R\theta$, $v_{com} = R\omega$, $a_{com} = R\alpha$.